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A B S T R A C T   

Pecans are a specialty crop in New Mexico’s Lower Rio Grande Valley (LRGV), a region that produces around 
30% of pecans in USA. Pecans are also a major water consumer, requiring 1200–1300 mm depth for maximum 
yield in this region. The combination of prolonged drought and increasing competition for water among various 
water consumers has created an urgency for the efficient use of scarce water resources in the LRGV. More 
efficient water management through the real-time irrigation scheduling is one method to promote reduced water 
application in agriculture. This study was conducted to calibrate and validate a new modified model for esti
mating the pecan actual evapotranspiration (ETa) based on canopy temperature using thermal images taken from 
an Unmanned Aerial Vehicle (UAV) during three growing seasons in a drip irrigated pecan orchard. A capacity to 
estimate the relation between ETa and canopy temperature provides an important information to guide water 
management choices. The Simplified Surface Energy Balance (SSEBop) model was modified and used for cali
bration and validation. Applied irrigation water based on ETa was used to calibrate and validate the proposed 
modified model. The scaling factor of K in the SSEBop model was calculated as 0.75 through the calibration 
process. Findings showed a good agreement between estimated pecan ETa using modified SSEBop model and 
applied water based on ETa during calibration (R2 

= 0.72, RMSE = 0.6 mm/d, MAE = 0.48 mm/d) and validation 
period (R2 = 0.90, RMSE = 0.24 mm/d, MAE = 0.22 mm/d). Also, findings confirmed the utility of modified 
model for estimating monthly pecan ETa (RMSE = 8.87 mm/month, MAE = 6.55 mm/month). The proposed 
modified model provides pecan farmers with a simple real-time irrigation scheduling tool where they can better 
practice precision irrigation. Although the modified model was calibrated and validated for irrigation scheduling 
in the LRGV, it has potential to see application for other locations with different crops using similar calibration 
approach.   

1. Introduction 

New Mexico (NM) is the second highest pecan producer in the USA 
with 35.74 thousand tons of in-shell nuts production in 2020 (USDA- 
NASS, 2021). The value of the pecan produced in NM was 122.9 million 
dollars which contributed 28% of the total value of the pecan produced 
in the USA in 2020 (USDA-NASS, 2021). Pecan is a major crop in New 
Mexico’s Lower Rio Grande Valley (LRGV) where the majority of NM’s 
pecan orchards are located. Pecan is known as a major water consumer 
in the LRGV where the annual evapotranspiration (ET) for pecan is 
estimated to range from 1200 to 1300 mm (Samani et al., 2009). With 

limited precipitation, agriculture in the LRGV depends on irrigation both 
from the Rio Grande River and groundwater pumping. The flow of the 
Rio Grande River has reduced significantly since 2000 which was the 
beginning of the recent long-term drought. In addition, the average on- 
farm irrigation efficiency in the LRGV has been estimated as 60–65% 
with values as low as 20% (Ahadi et al., 2013). There is an urgent need 
to improve irrigation efficiency to save water. One way to improve 
irrigation efficiency is through real-time irrigation scheduling with the 
aid of technologies such as remote sensing. The recent study in the LRGV 
showed that the long-term drought has not only reduced the availability 
of water, but also has increased the pecan water consumption through 
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increased temperature (Mokari et al., 2021). 
Water is the most important factor in irrigated agriculture in the 

LRGV. A wide variety of pecans at different ages is being grown in the 
area. Understanding crop coefficient (Kc) and Spatiotemporal variability 
of ET are major factors in proper water management. There are various 
methods to measure Kc and crop water consumption (ET). Direct ET 
measurement approaches such as Flux Towers (Samani et al., 2009) can 
provide continuous ET measurement within a limited area, but Flux 
Towers are expensive to install and operate. Flux Towers are often used 
for research and validation of other methods such as remote sensing 
ones. Remote sensing technology provides an alternative and innovative 
approach to improve productivity, increase water use efficiency and 
accelerate economic return. The recent developments in remote sensing 
technology have provided an immense opportunity for large-scale and 
low-cost assessment of the pecan ET and Kc (Samani et al., 2009; Samani 
et al., 2011; Wang et al., 2007). Satellites based remote sensing images 
can also provide spatially distributed measurements. However, the 
spatial resolution of this multispectral satellite imagery does not provide 
the precision that is needed for small scale fields. In addition, the timing 
or frequency of satellites overpass is not always enough to meet the 
research or real time water management needs. More than 90% of pecan 
fields in the LRGV are limited to farm sizes of less than 25 acres, limiting 
the use of Landsat images due to low resolution (Piñón-Villarrea et al., 
2020). The other problem with using satellite-based multispectral im
ages is the complexity of data analysis and the lag-time associated with 
data availability and analysis, making it inaccessible to individual 
farmers. 

On the other hand, Unmanned Aerial Vehicles (UAVs) with mounted 
multispectral cameras provide a low-cost alternative for real-time irri
gation scheduling and precision agriculture (PA) which can lead to the 
improved water use efficiency, economic productivity and compatibility 
in irrigated agriculture. UAVs can help to solve the spatial and temporal 
variabilities associated with large scale remote sensing images. UAVs 
can be flown any time as long as the weather condition is good. More
over, the cloud cover is less of a concern than satellite remote sensing 
when UAVs are employed. Over the years, UAVs have been widely 
employed for PA solutions (Das et al., 2021; Mogili and Deepak, 2018) 
and have shown great potential for reducing working hours where sta
bility, measurement accuracy, and productivity are increasingly 
improved in agriculture operations (Huang et al., 2009; Huang et al., 
2013; Primicerio et al., 2012; ten Harkel et al., 2020). Several models 
have developed for satellite-based ET measurements (Allen Richard 
et al., 2007; Anderson et al., 2011; Fisher et al., 2020; Fisher et al., 2008; 
Senay et al., 2019; Senay, 2018; Su, 2002). Although these models have 
different data requirements and biases, they can be modified to use 
UAVs mounted multispectral and thermal sensors for estimating ET. 
Hoffman et al. (2016) investigated a UAV based water deficit index 
(WDI) for producing accurate crop water stress maps for barley in 
different weather situations. They showed that the UAV-based WDI 
could produce ET estimations generally aligned with the eddy covari
ance tower measurements. 

This study demonstrates precision irrigation (PI) with thermal im
aging which is known as an effective technique for product identifica
tion and detection in agriculture (Kheiralipour et al., 2015; Kheiralipour 
et al., 2013; Singh et al., 2020; Vadivambal and Jayas, 2011; Zeng et al., 
2020). Although there are other PI techniques such as leaf monitor 
system (Dhillon et al., 2019), sap flow measurements (Fernández et al., 
2008), and soil moisture sensors (Sui, 2018), these methods accompany 
with several limitations and difficulties. As an example, Zuazo et al 
(2021) discussed the leaf monitor system technique as a less reliable PI 
method for fruit trees because of monitoring leaf water potential than 
stem water potential. Sap flow sensors are fragile and need frequent 
maintenance. Burgess and Dawson (2008) recommended caution when 
using sap flow measurements for estimating plant water capacitance. 
Therefore, the objectives of present study were (i) to evaluate the 
feasibility of using UAV based sensors to estimate real time pecan water 

consumption (ii) to validate the use of single thermal sensor combined 
with modified Senay’s model for estimating the pecan actual ET. To 
achieve these objectives, the remote sensing based ET estimation model 
proposed by Senay (2018) and Senay et al. (2019) was modified and 
applied to the UAV thermal based images. The modified model was 
calibrated and validated using three years of field measured data. The 
modified model is tested for its effectiveness and utility for irrigation 
scheduling of pecan water management. 

2. Method and materials 

2.1. Experimental site 

Field measurements of canopy temperature were conducted during 
three growing seasons of 2019, 2020 and 2021 in a drip irrigated pecan 
orchard located in the Leyendecker Plant Science Research Center 
(PSRC) of New Mexico State University (latitude 32◦11′56.66′′N, 
longitude 106◦44′30.50′′W). The orchard area is about 3 ha with twenty- 
seven rows of 10-year-old ‘Pawnee’ pecan trees planted in a 9 m × 9 m 
pattern with 475 trees in total. No tillage operations have been done 
since installation of drip lines in 2016. Spraying herbicide in tree rows 
and mowing the region between tree rows are being done on a regular 
basis. The surface and groundwater are the irrigation sources. Soil 
texture in the experimental site is clay loam (74%) and silty loam (26%). 
Irrigations were made according to the proposed method by Wang et al. 
(2007). More information on irrigation can be found in Section 2.3. 

2.2. Model development and theory 

The Simplified Surface Energy Balance (SSEBop) model calculates 
actual evapotranspiration (ETa) for each satellite image (Senay et al., 
2019; Senay, 2018). This model uses satellite-based surface temperature 
and reference evapotranspiration (ET0) as the main model inputs, and it 
is based on an energy balance approach where the latent heat flux is only 
solved at the daily time scale to calculate the ET fraction (ETf) for each 
satellite image pixel as follow: 

ETf = 1 − γs(Ts − Tc) (1)  

γs =
1

(Th − Tc)
(2)  

where γs is the dry-bare surface psychrometric constant, Ts is obtained 
from the satellite image thermal band (K), Tc is the coldest surface 
temperature limit (K) which is a function of the near surface maximum 
temperature, and Th is the hot dry surface temperature (K) (Senay et al. 
2013). 

Once ETf is determined, the ETa is calculated as follow: 

ETa = K × ETf × ET0 (3)  

where ETa is the actual evapotranspiration, ET0 is the reference evapo
transpiration which can be derived from various methods proposed by 
FAO-56 (Allen et al., 1998), and K is the scaling coefficient of 1.25 
(Senay et al., 2019). K value is variable and needs to be calibrated for 
new crops (Senay et al., 2013). 

Although the albedo value for most agricultural fields is less than 
0.25, the SSEBop model can be applied to the vegetated surfaces with 
albedo higher than 0.25 using the albedo correction method proposed by 
Senay et al. (2013). Areas such as dark lava rocks in parts of Nevada 
have high emissivity values and these areas can affect Ts measurement 
which can result in underestimating ETf although these areas do not play 
a crucial role in total seasonal ET due to lack of precipitations and 
vegetations in these areas. However, the SSEBop model can still work 
well when emissivity value is less than 1 (Senay et al., 2013). 

As it was mentioned above, the SSEBop model is designed for esti
mating ETa using satellite images. To make the model work more 
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accurately when a thermal image taken from UAV mounted thermal 
camera is used, the SSEBop model needs to be modified. Fig. 1 represents 
a sample image taken from a UAV in the visible and thermal ranges. 
Fig. 1b shows the minimum, maximum, and average temperatures 
measured in the sensor scene representing 12 pecan trees (Fig. 1). 

Thus, the modified SSEBop model with respect to the thermal image 
taken from a UAV over an irrigated pecan orchard can be proposed as 
follow: 

ETa = K ×

[

1 −
(Tc − Ta)

(Td − Ta)

]

× ET0 (4)  

where ETa is the actual pecan water consumption (mm/d), K is the 
scaling coefficient, Tc is the overall average temperature in the sensor 
scene (◦C) (Fig. 1b) which includes trees canopies as well as the spacing 
between the trees, Ta is the air temperature which can be derived from 
either a nearby weather station or a handheld thermometer (◦C), Td is 
the dry spot surface temperature which is equal to the maximum 
measured temperature in the sensor scene (◦C) (Fig. 1b), and ET0 is 
reference evapotranspiration (mm/d) which can be obtained from 
various methods (Allen et al., 1998). It is important to note that the Td is 
the same as Th in the Eq. (2). However, Th is an estimated value through 
several empirical equations (Senay et al., 2013) while Td in our proposed 
model is an easily measured value which can contribute to more 

accuracy. 

2.3. Data collection 

In order to calibrate and validate the modified SSEBop model for the 
UAV based thermal images, the UAV was flown 15 times over the pecan 
orchard and thermal images were taken at height of 60 m above the 
ground at noon during three growing seasons of 2019–2021. The flight 
operations were done in sunny days at noon in order to minimize the 
effect of cloud and shade in the thermal measurements. The thermal 
sensor used in this study is developed by the DJI Corporation where the 
thermal resolution in pixels, frame rate, and temperature measurement 
accuracy are 640 × 512, 30 Hz, ±2 ◦C, respectively. Although the 
manufacturer has announced ±2 ◦C error in the sensor measurement 
accuracy, the accuracy of thermal sensor was tested and measured 
within ±1.8 ◦C error in the pecan orchard using a calibrated hand-held 
FLUKE thermometer which was within the manufacturer error range. To 
calculate the surface thermal emissivity (ԑo) in the pecan orchard, the 
Tasumi model was used (Samani et al., 2009; Tasumi, 2003). Based on 
this model, ԑo is a function of Leaf Area Index (LAI) as follow: 

εo = 0.95+ 0.01 LAI (5)  

where ԑo is the thermal emissivity and LAI is the leaf area index. LAI is 

Fig. 1. A sample image taken from a UAV in the visible (a) and thermal (b) ranges.  
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ranging from 0 to 3 representing a bare soil to the fully covered agri
cultural field. 

To have an estimate value of LAI for the studied pecan orchard, the 
results from a recent study on estimating LAI of pecan orchard was used 
(Othman and St Hilaire, 2021). The study was conducted on two mature 
(20–30 years old) pecan orchards in the Mesilla Valley where one or
chard was located in PSRC of New Mexico State University. Based on this 
study, LAI was ranged between 1.01 and 1.60 across the two growing 
seasons for the pecan orchard located in PSRC. Assuming the maximum 
LAI value for the studied pecan orchard and Eq. (5), ԑo was found 0.966 
which was within the calibration range of the thermal sensor indicating 
there were no significant effects on UAV temperature measurements 
caused by ԑo. 

Irrigation scheduling of the studied orchard was based on a meth
odology described by Wang et al. (2007) as follow: 

ETa = Kc × ET0 (6)  

KC

KCmax
= 1.33ECC (7)  

where ETa is consumptive water consumption, Kc is crop coefficient and 
ET0 is the reference evapotranspiration, ECC is the effective canopy 
cover and Kcmax is the Kc for a closed-canopy pecan orchard which can be 
derived from Sammis et al. (2004). 

To calculate ET0, climatic data from the weather station located in 
PSRC of New Mexico State University were collected and daily ET0 was 
calculated using the FAO Penman-Monteith equation (Allen et al., 
1998). Effective precipitation was calculated using the methodology 
proposed by USDA-SCS (1967). The irrigation efficiency of 90% was 
used to calculate the irrigation depth. The applied irrigation water was 
considered as the pecan ETa as the deep percolation was negligible in the 
studied pecan orchard. 

2.4. Statistical measures 

To evaluate the performance of modified SSEBop model for esti
mating pecan ETa during calibration and validation periods, the 
following quantitative measures were applied (Despotovic et al., 2015). 

R2 =

∑n
i=1(Pi − Ai)

2

∑n
i=1(Ai − Aave)

2 (8)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(Pi − Ai)
2

N

√

(9)  

MAE =
1
n
∑n

i=1
|Pi − Ai| (10)  

where R2 is the coefficient of determination, RMSE is the root mean 
square error, MAE is the mean absolute error, Pi is the ith value of 
predicted ETa by the modified SSEBop model, Ai is the ith value of the 
applied water based on ETa, Aave is the average of applied water based 
on ETa values, and N is the number of paired values. 

Higher values of R2 indicate more efficient model while lower values 
of RMSE and MAE show a better model performance. 

2.5. Result and discussion 

The modified SSEBop model was calibrated using the thermal images 
taken in the growing season of 2019 and the new optimized scaling 
factor of K for pecan was obtained as 0.75 which was much lower than 
the proposed K value for SSEBop model. To validate the modified SSE
Bop model using new optimized K value (K = 0.75), thermal images 
taken in two next growing seasons (2020 and 2021) were used. Figs. 2 
and 3 show the differences between estimated pecan ETa using modified 
SSEBop model and applied water based on ETa during the calibration 
and validation periods. Generally, there were good agreements between 
estimated pecan ETa using modified SSEBop model and applied water 
based on ETa during both calibration and validation periods (validation 
period in particular) where R2 were observed 0.72 and 0.90 for these 
periods, respectively (Figs. 2 and 3). During the calibration period, 
RMSE and MAE were found 0.6 (mm/d) and 0.48 (mm/d), respectively, 
while these values were observed 0.24 (mm/d) And 0.22 (mm/d) during 
the validation period, respectively (Figs. 2 and 3). Fig. 4 compares the 
estimated monthly pecan ETa using modified SSEBop model and applied 
water based on ETa during 2021 growing season. A good agreement was 
observed between the estimated monthly pecan ETa and applied water 
based on ETa where RMSE and MAE were 8.87 mm/month and 6.55 

Fig. 2. Scatter plot of estimated pecan ETa using modified SSEBop model and applied water based on ETa during the calibration time period (2019).  
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mm/month, respectively. Results showed that the proposed modified 
model can be applied to estimate the pecan ETa with relatively high 
accuracy. 

Other investigator (Samani et al., 2011) used multispectral images to 
estimate pecan ET for various field conditions in same areas. They 
developed a linear regression model between the ratio Kc/Kc-ref and fc, 
where Kc-ref and fc were the measured Kc for a mature pecan orchard and 
fractional cover canopy, respectively. Ibraimo et al. (2016) applied this 
Kc-fc model for monthly estimation of pecan ET in South Africa and their 
findings proved satisfactory results although they concluded adjusting 
Kc-ref for local climate conditions in order to achieve more accurate 
estimation of monthly ET. Even though both Kc-fc and our proposed 
methods resulted in similar accuracy, our proposed model is much 
simpler and less time consuming. The proposed model is simplified and 
is capable of estimating ETa with easily derived temperature data. It can 
also apply to other crops similar to the study presented by Senay et al 
(2019) and it is not restricted to the pecan. However, a proper 

calibration and validation is highly recommended. Also, it is highly 
recommended to operate UAV in sunny days preferably at noon to 
eliminate the effects caused by cloud and trees shade on thermal 
measurements. 

The proposed model has practical application in water conservation 
and irrigation scheduling of pecan. A pecan farmer can easily use a small 
drone mounted with a single thermal sensor to capture the canopy 
temperature scene and use a simple model (Eq. (4)) to estimate the daily 
water consumption. In addition, the information can be used to calculate 
temporal values of pecan crop coefficients for estimating pecan ETa 
between the drone flights. The application of the model is limited to the 
availability of cloud and wind free days. In addition, the accessibility to 
reliable climate date for calculating ET0 is needed. 

2.6. Conclusion 

A simple procedure is presented where canopy temperature can be 

Fig. 3. Scatter plot of estimated pecan ETa using modified SSEBop model and applied water based on ETa during the validation time period (2020–21).  

Fig. 4. Comparison between estimated monthly pecan ETa using modified SSEBop model and applied water based on ETa during 2021 growing season.  
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measured to estimate pecan ETa. The concept was derived from the 
SSEBop model which was introduced for measuring ETa using satellite 
images. The proposed model was modified and simplified in order to 
make the model work for UAVs purposes. The scaling factor of K was 
optimized through a proper calibration/validation process which in
cludes data from three growing seasons. The new optimized scaling 
factor of K for pecan was calculated as 0.75. Good agreements were 
observed between the estimated pecan ETa using modified SSEBop 
model and applied water based on ETa during both calibration and 
validation periods (R2 > 0.72, RMSE < 0.6 mm/d, MAE < 0.5 mm/d). 
The comparison between the estimated pecan ETa using modified SSE
Bop model and applied water based on ETa during validation period 
confirmed that pecan ETa can be estimated with accuracy where RMSE 
and MAE were observed 0.24 mm/d and 0.22 mm/d, respectively. Also, 
comparisons between the estimated monthly pecan ETa using modified 
SSEBop model and applied water based on ETa during 2021 growing 
season indicated that the proposed model is an accurate tool for esti
mating monthly pecan ETa with RMSE and MAE of 8.87 mm/month and 
6.55 mm/month, respectively. This ETa information can be combined 
with soil properties for developing real-time irrigation scheduling. The 
proposed model is applicable for other crops although a proper cali
bration for scaling factor of K is recommended. 
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