## Contributors

Ben McMahan SWCO Editor; Research, Outreach & Assessment Specialist (CLIMAS)

Mike Crimmins **UA Extension Specialist** 

**Dave Dubois** New Mexico State Climatologist

**Gregg Garfin** Founding Editor and Deputy Director of Outreach, Institute of the Environment

Nancy J. Selover Arizona State Climatologist

**Betsy Woodhouse** Institute of the Environment

**Published** by the Climate Assessment for the Southwest (CLIMAS), with support from University of Arizona Cooperative Extension, the Arizona State Climate Office, and the New Mexico State Climate office.

**Disclaimer.** This packet contains official and non-official forecasts, as well as other these materials. The user assumes the entire risk related to the use of this data. CLIMAS, (ASU) disclaim any and all warranties, whether expressed or implied, including (without limitation) any implied warranties of merchantability or fitness for a particular purpose. In no event will CLIMAS, UA Office at ASU or The University of Arizona be indirect, incidental, consequential, special or exemplary damages or lost profit resulting from any use or misuse of this data.

# **April Southwest Climate Outlook**

Precipitation & Temperature: March precipitation totals were average to below average in most of the Southwest except for the northeastern corner of New Mexico (Fig. 1a). March temperatures were much-above average across the entire Southwest, with record warm temperatures in the southeast corner of Arizona and most of New Mexico (Fig. 1b). April precipitation to date has been below average for much of southern Arizona and New Mexico (Fig. 2), while April temperatures have been between 0 and 6 degrees above normal for most of the region. Water year precipitation has been normal to above normal for most of Arizona and New Mexico, aside from a dry region along much of the Arizona-Mexico border (Fig. 3).

Snowpack & Water Supply: Warm temperatures across the West (particularly in the Upper Colorado River Basin) have begun to put a dent in the snowpack and snow water equivalent (SWE) values this month, especially in warmer low-elevation areas. Most of the stations in Arizona and New Mexico have dipped to below 50 percent of normal SWE, a decline that is also reflected in the Upper Colorado River Basin region of Utah and Colorado (Fig. 4). Snowpack and SWE remain markedly above average in other locations in the West, particularly in much of the Great Basin and the Sierras in CA. The persistent warm temperatures of early 2017 combined with the ample snowpack are resulting in similarly remarkable streamflow forecasts (see Fig. 6 on p. 4), as well as improvements in reservoir storage values (see p.5 for details on reservoir levels).

Drought: While much of the West has seen improvements in drought conditions (notably, California declared an end to its drought), southern Arizona and New Mexico have experienced an increase in drought designation, especially near the borderlands, owing to near-record- to record-warm temperatures and very little precipitation in the last few months (Fig. 5). Thus the wetter-than-normal conditions that helped reduce drought conditions across much of the West (see Fig. 3), provided only short-lived recovery in southern Arizona and New Mexico.

Environmental Health & Safety: The impressive wildflower bloom has continued, fueled by a combination of fall and earlywinter precipitation and sustained warm temperatures over the last few months. These conditions have also resulted in a particularly bad year for allergies, with sustained growing periods leading to high pollen levels across the region. The warm and dry weather continues to produce dry and dusty conditions, again resulting in numerous closures of interstate highways when dust conditions are severe. The temperature and precipitation patterns of the past six months have also contributed to elevated levels of fine fuels, so with temperatures on the rise and precipitation on the wane, fire managers will continue to keep watch very carefully, especially on days when high winds and low dew-point temperatures create conditions favorable for fire ignition and spread.

El Niño Southern Oscillation: Current forecasts suggest ENSO-neutral conditions continuing through the spring and early summer, with increasing chance of an El Niño event during the second half of 2017 (see ENSO Tracker on p. 3-4).

Precipitation & Temperature Forecast: The April 20 NOAA Climate Prediction Center's outlook for April calls for equal chances of above- or below-average precipitation, and increased chances of above-average temperatures across the region. The three-month outlook for May through July calls for equal chances of above- or below-average precipitation in most of Arizona and increased chance of above-average precipitation in New Mexico and the remainder of Arizona (Fig. 6, top), along with increased chances of above-average temperatures across the region (Fig. 6, bottom).

# Tweet Apr SW Climate Outlook CLICK TO TWEET

APR2017 @CLIMAS UA SW Climate Outlook & Summary, ENSO Tracker, Reservoir Volumes -http://bit.ly/2ory9tl #SWclimate #AZWX #NMWX #SWCO







Figure 1 **National Center for Environmental** Information

Figure 2 **High Plains Regional Climate** Center

Figures 3-4 Western Regional Climate Center

Figure 5 **U.S. Drought Monitor** http://droughtmonitor.unl.edu/

Figure 6 **NOAA - Climate Prediction Center** 

# **April Southwest Climate Outlook**

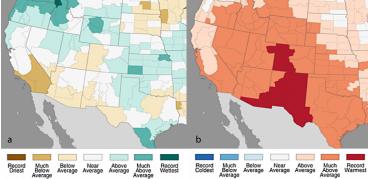
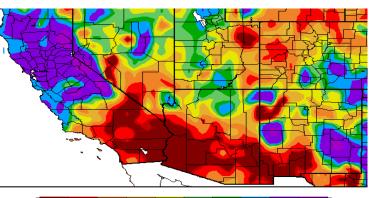




Figure 1: Mar 2017 Precipitation (a) & Temperature Ranks (b)



125 150 100 260 400 Figure 2: Apr 2017 - Pct. of Normal Precipitation 4/1 - 4/19/2017

Hankings

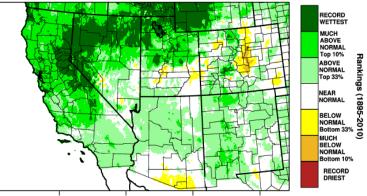



Figure 3: Water Year Precipitation Percentiles Oct 2016 - Mar 2017

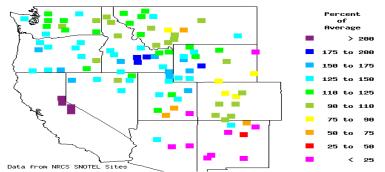
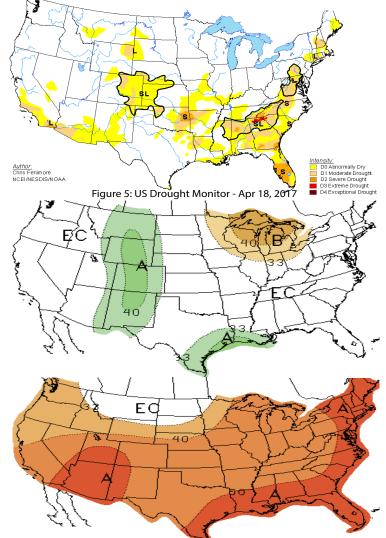




Figure 4: Basin Percent of Average Snow Water Equivalent (Apr 20, 2017)



#### Figure 6: Three-Month Outlook - Precipitation (top) & Temperature (bottom) - Apr 20, 2017

## CLIMAS YouTube Channel

Visit our YouTube channel for videos of content pulled from the podcast.

## Podcasts

Visit our website or iTunes to subscribe to our podcast feed.

Figure 1 Australian Bureau of Meteorology

Figure 2 NOAA - Climate Prediction Center

Figure 3 International Research Institute for Climate and Society

Figure 4 NOAA - Climate Prediction Center http://www.cpc.ncep.noaa.gov/

NOAA - Climate.gov The Spring Predictability Barrier: we'd rather be on Spring Break http://bit.ly/1Xipsx7

## El Niño / La Niña

Information on this page is also found on the CLIMAS website:

www.climas.arizona.edu/sw-climate/ el-niño-southern-oscillation

# **ENSO Tracker**

Similar to last month, oceanic and atmospheric indicators of the El Niño-Southern Oscillation (ENSO) are in the range of neutral (Figs. 1-2), and these conditions are forecast to last through the spring and summer. Most forecasts and outlooks indicate that El Niño conditions could return in mid-to-late 2017, but these assessments come with the annual caveat of increased uncertainty associated with the "spring predictability barrier" (see link in sidebar), during which time the specifics regarding the possibility, timing, and intensity of an El Niño event are elusive. At any rate, the models and forecasts indicate a near-zero probability of La Niña in 2017, leaving forecasters to decide between the probability of neutral or El Niño conditions in later 2017.

The various forecasts provide insight into the range of predictions for the remainder of spring and the ENSO signal for the rest of 2017. On April 10, the Japanese Meteorological Agency (JMA) identified a continuation of ENSO-neutral conditions, with a 50-percent chance of El Niño conditions by the end of summer, but flagged high uncertainties in the models. On April 11, the Australian Bureau of Meteorology maintained their El Niño Watch, also with a 50-percent chance of an El Niño event. They identified warming oceanic conditions as indicating an increased chance of El Niño conditions in 2017 (and having contributed to recent severe flooding in South America). On April 13, the NOAA Climate Prediction Center (CPC) observed that oceanic and atmospheric conditions were consistent with ENSO-neutral conditions, but that some flagging La Niña-like convection was still affecting their assessment. They forecast a 60- to 65-percent chance of ENSOneutral conditions for April-June 2017, and a 50-percent chance of El Niño conditions between August and December. On April 20, the International Research Institute for Climate and Society (IRI) and CPC identified ongoing neutral conditions, but with some westerly anomalies that may indicate the "first sign of a brewing El Niño." The IRI model spread shows a wide range from neutral to strong El Niño, and the mid-April forecast shows an approximately 65-percent chance of an El Niño event starting in summer and lasting through 2017 (Fig. 3). The North American Multi-Model Ensemble (NMME) characterizes the current model spread and highlights the variability looking forward. The NMME mean is projected to reach weak El Niño status by early summer (Fig. 4).

(continued on next page)

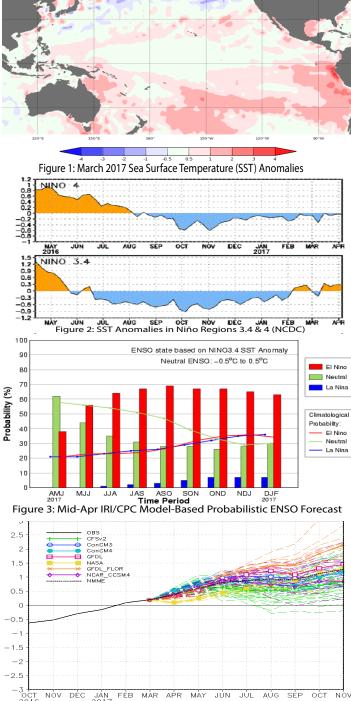
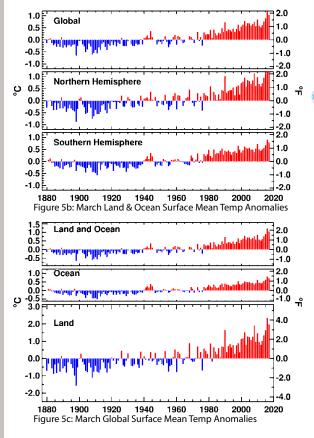



Figure 4: North American Multi-Model Ensemble Forecast for Niño 3.4

Figures 5a-c National Centers for Environmental Information http://www.ncdc.noaa.gov

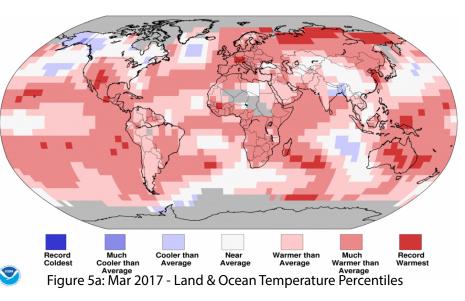
Figures 6 Natural Resources Conservation Service http://www.wcc.nrcs.usda.gov/

NOAA - Climate Prediction Center El Niño Criteria and Oceanic Niño Index Values http://bit.ly/RjTP9B


## El Niño / La Niña

Information on this page is also found on the CLIMAS website:

www.climas.arizona.edu/sw-climate/ el-niño-southern-oscillation


#### **ENSO Tracker - Summary**

Given the uncertainty associated with springtime forecasts and the waning influence of remnant La Niña conditions, the Southwest remains in a holding pattern regarding an El Niño event in 2017. Even if an El Niño event develops, there is no certainty about the strength of the event or the scale of the impacts likely to be felt in the Southwest.



#### **Streamflow Forecasts**

March 2017 turned out to be the warmest non-El Niño March on record and the second warmest March overall (Figs. 5a-c). The warm temperatures in 2017, in conjunction with mostly above-average precipitation across the West, mean streamflow forecasts remain well-above average (Fig. 6), and ahead of schedule.



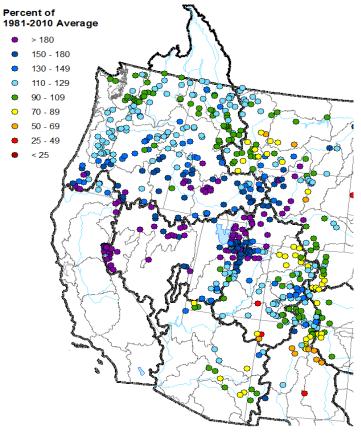



Figure 6: USDA NRCS Spring & Summer Streamflow Forecast - Apr 1, 2017

Portions of the information provided in this figure can be accessed at the Natural Resources Conservation Service

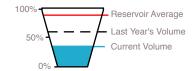
Arizona: http://1.usa.gov/19e2BdJ

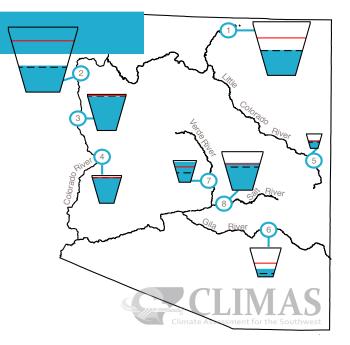
New Mexico: http://www.wcc. nrcs.usda.gov/cgibin/resv\_rpt. pl?state=new\_mexico

Contact Ben McMahan with any questions or comments about these or any other suggested revisions.

#### **Notes**

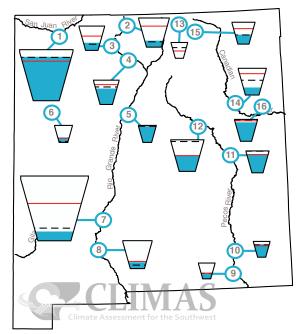
The map gives a representation of current storage for reservoirs in Arizona and New Mexico. Reservoir locations are numbered within the blue circles on the map, corresponding to the reservoirs listed in the table. The cup next to each reservoir shows the current storage (blue fill) as a percent of total capacity. Note that while the size of each cup varies with the size of the reservoir, these are representational and not to scale. Each cup also represents last year's storage (dotted line) and the 1981–2010 reservoir average (red line).


The table details more exactly the current capacity (listed as a percent of maximum storage). Current and maximum storage are given in thousands of acre-feet for each reservoir. One acre-foot is the volume of water sufficient to cover an acre of land to a depth of 1 foot (approximately 325,851 gallons). On average, 1 acre-foot of water is enough to meet the demands of four people for a year. The last column of the table lists an increase or decrease in storage since last month. A line indicates no change.


These data are based on reservoir reports updated monthly by the National Water and Climate Center of the U.S. Department of Agriculture's Natural Resources Conservation Service (NRCS).

## **Reservoir Volumes**

DATA THROUGH MAR 31, 2017


Data Source: National Water and Climate Center, Natural Resources Conservation Service





| Reservoir            | Capacity | Current<br>Storage*          | Max<br>Storage* | One-Month<br>Change in<br>Storage* |  |
|----------------------|----------|------------------------------|-----------------|------------------------------------|--|
| 1. Lake Powell       | 47%      | 11,350.0                     | 24,322.0        | 137.6                              |  |
| 2. Lake Mead         | 41%      | 10,707.0                     | 26,159.0        | -119.0                             |  |
| 3. Lake Mohave       | 95%      | 1,718.0                      | 1,810.0         | 30.0                               |  |
| 4. Lake Havasu       | 94%      | 579.0                        | 619.0           | -8.8                               |  |
| 5. Lyman             | 56%      | 16.9                         | 30.0            | 6.4                                |  |
| 6. San Carlos        | 28%      | 241.8                        | 875.0           | 13.9                               |  |
| 7. Verde River Syste | m 94%    | 271.3                        | 287.4           | -8.8                               |  |
| 8. Salt River System | 72%      | 1,467.2                      | 2,025.8         | 141.9                              |  |
|                      |          | *KAE: thousands of sore foot |                 |                                    |  |

\*KAF: thousands of acre-feet



\* in KAF = thousands of acre-feet \*\*\*The last available reading for \*\*Reservoirs with updated "Max Storage" Costilla reservoir is Jan 5, 2017

Costilla reservoir is Jan 5, 2017 One-Month

| Reservoir         | Capacity | Current<br>Storage* | Max<br>Storage* | Change in<br>Storage* |
|-------------------|----------|---------------------|-----------------|-----------------------|
| 1. Navajo         | 86%      | 1,464.7             | 1,696.0         | 125.0                 |
| 2. Heron          | 22%      | 86.7                | 400.0           | 19.6                  |
| 3. El Vado        | 31%      | 58.6                | 190.3           | 4.7                   |
| 4. Abiquiu        | 66%      | 122.4               | 186.8**         | -1.3                  |
| 5. Cochiti        | 95%      | 47.7                | 50.0**          | 1.7                   |
| 6. Bluewater      | 29%      | 11.3                | 38.5            | 3.5                   |
| 7. Elephant Butte | 14%      | 312.7               | 2,195.0         | 17.6                  |
| 8. Caballo        | 23%      | 77.0                | 332.0           | 47.2                  |
| 9. Lake Avalon    | 38%      | 1.7                 | 4.5**           | -1.4                  |
| 10. Brantley      | 83%      | 34.9                | 42.2**          | -3.2                  |
| 11. Sumner        | 84%      | 30.1                | 102.0**         | -1.8                  |
| 12. Santa Rosa    | 51%      | 54.6                | 105.9**         | 3.3                   |
| 13. Costilla      | 5%       | 0.0                 | 16.0            | ***                   |
| 14. Conchas       | 28%      | 72.3                | 254.2           | -1.3                  |
| 15. Eagle Nest    | 43%      | 34.1                | 79.0            | 2.2                   |
| 16. Ute Reservoir | 86%      | 171                 | 200             | -1.0                  |

Figure 1 Climate Program Office http://cpo.noaa.gov/

#### **RISA Program Homepage**

http://cpo.noaa.gov/ClimateDivisions. ClimateandSocietalInteractions/ RISAProgram.aspx

#### UA Institute of the Environment

http://www.environment.arizona.ed

New Mexico Climate Center

## CLIMAS Research & Activities

#### **CLIMAS Research**

www.climas.arizona.edu/research/

#### **CLIMAS** Outreach

www.climas.arizona.edu/outreach

#### **Climate Services**

www.climas.arizona.edu/ climate-services



#### What is CLIMAS?

The Climate Assessment for the Southwest (CLIMAS) program was established in 1998 as part of the National Oceanic and Atmospheric Administration's Regional Integrated Sciences and Assessments program. CLIMAS — housed at the University of Arizona's (UA) Institute of the Environment—is a collaboration between UA and New Mexico State University.

The CLIMAS team is made up of experts from a variety of social, physical, and natural sciences who all work with partners across the Southwest to develop sustainable answers to regional climate challenges.

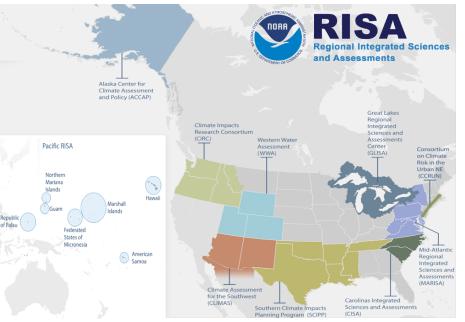



Figure 1: NOAA Regional Integrated Sciences and Assessments Regions

## What does CLIMAS do?

The CLIMAS team and our partners work to improve the ability of the region's social and ecological systems to respond to and thrive in a variable and changing climate. The program promotes collaborative research involving scientists, decision makers, resource managers and users, educators, and others who need more and better information about climate and its impacts. Current CLIMAS work falls into six closely related areas: 1) decision-relevant questions about the physical climate of the region; 2) planning for regional water sustainability in the face of persistent drought and warming; 3) the effects of climate on human health; 4) economic trade-offs and opportunities that arise from the impacts of climate on water security in a warming and drying Southwest; 5) building adaptive capacity in socially vulnerable populations; 6) regional climate service options to support communities working to adapt to climate change.

## Why is this work important?

Climate variability and the long-term warming trend affect social phenomena such as population growth, economic development, and vulnerable populations, as well as natural systems. This creates a complex environment for decision making in the semi-arid and arid southwestern United States. For example, natural resource managers focused on maintaining the health of ecosystems face serious climate-related challenges, including severe sustained drought, dramatic seasonal and interannual variations in precipitation, and steadily rising temperatures. Similarly, local, state, federal, and tribal governments strive to maintain vital economic growth and guality of life within the context of drought, population growth, vector-born disease, and variable water supplies. Uncertainties surrounding the interactions between climate and society are prompting decisionmakers to seek out teams of natural and social scientists-like those that comprise CLIMAS—for collaborations to help reduce risk and enhance resilience in the face of climate variability and change.

Figure 1 Climate Program Office http://cpo.noaa.gov/

#### **RISA Program Homepage**

http://cpo.noaa.gov/ClimateDivisions/ ClimateandSocietalInteractions/ RISAProgram.aspx

UA Institute of the Environment

http://www.environment.arizona.edu/

New Mexico Climate Center http://weather.nmsu.edu/

## CLIMAS Research & Activities

**CLIMAS Research** 

www.climas.arizona.edu/research/

#### **CLIMAS** Outreach

www.climas.arizona.edu/outreach

**Climate Services** 

www.climas.arizona.edu/ climate-services



Dear colleagues,

We are reaching out to ask you share your CLIMAS story with us, and tell us about the kind of work you would like to see us do in the coming years.

In 1998, the Climate Assessment for the Southwest (or CLIMAS) was founded with a mission to improve the ability of people across the Southwest to respond sufficiently and appropriately to climate events, variability, and changes. Over those 19 years, we have worked directly with many of you to try to fulfill that mission. We are now looking ahead to the next 5 years and we would like to hear from you.

If you interact with CLIMAS--whether you read the Southwest Climate Outlook, listen to our podcast, or have partnered with us on projects-we would love to hear your story:

Please visit **www.climas.arizona.edu/climas-stories** to tell us what you think.

If your story or feedback is brief, you can also tweet it to us at  $@\operatorname{CLIMAS\_UA}$ 

Thanks,

\_\_\_\_\_

Dan

#### Daniel Ferguson, Ph.D.

Associate Research Scientist, Institute of the Environment

Director, Climate Assessment for the Southwest (CLIMAS)

Assistant Research Professor, School of Natural Resources and the Environment

Phone: 520-626-1779

Email: dferg@email.arizona.edu



SOUTHWEST CLIMATE OUTLOOK APRIL 2017