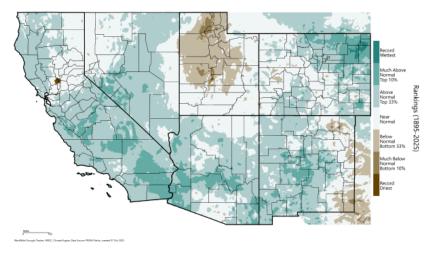


October 2025: Southwest Climate Outlook

Stacie Reece November 4, 2025

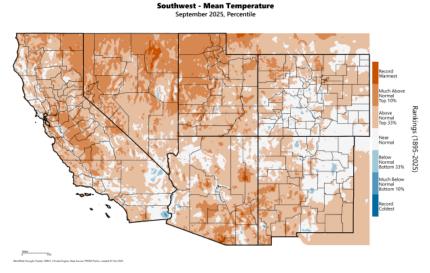
https://climas.arizona.edu/

The Southwest Climate Outlook is published by the Climate Assessment for the Southwest (CLIMAS), with support from University of Arizona Cooperative Extension, and the New


Mexico State Climate office.

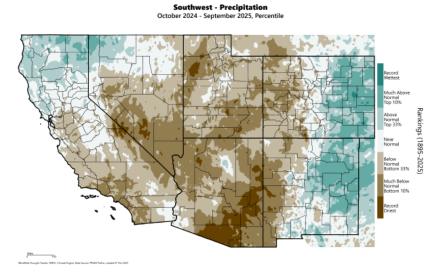
Questions/Contact: Stacie Reece, sreece@arizona.edu

Precipitation and Temperature


September precipitation was above normal across much of the region. For parts of central and southwest New Mexico, and parts of southern Arizona, precipitation was much-above normal. For eastern New Mexico, precipitation was near normal to below normal.

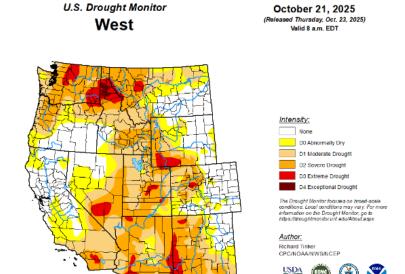
Southwest - Precipitation September 2025, Percentile

Source: WestWide Drought Tracker


September temperatures were above normal—ranking among the upper third of all Septembers on record—across much of Arizona and New Mexico. Parts of Arizona and southern New Mexico had much-above normal temperatures—ranking in the upper 10% of the record. Temperatures in northeast New Mexico were near normal.

Source: WestWide Drought Tracker

With September data in, the 2025 water year (October 2024–September 2025) record is complete. For much of Arizona and western New Mexico, water year precipitation totals fell much below normal—in the bottom 10% of years on record. It was the driest water year on record for an area extending across Pima County, Arizona into eastern Arizona. For much of eastern New Mexico, and parts of central and southern New


Mexico, water year precipitation was above normal to muchabove normal.

Source: WestWide Drought Tracker

Drought

Although parts of Arizona and New Mexico have seen some improvement in drought conditions in the past month, with some areas reclassified to lower levels on the drought intensity scale, nearly all lands within Arizona, and all but the northwest part of New Mexico remain affected by drought conditions of moderate or greater intensity. The most intense drought conditions extend from the upper Gila River basin south to the U.S.-Mexico border and north onto the Colorado Plateau in western New Mexico.

Source: U.S. Drought Monitor

droughtmonitor.unl.edu

NIDIS Improved and Expanded State Pages on Drought.Gov

New Mexico

Arizona

Water Supply

Storage at Lake Mead and Lake Powell is far below the long-term average and is also down over last year's levels. Other Arizona reservoirs are generally near average levels, except for San Carlos, where drought conditions in the Gila River basin have kept storage low. New Mexico reservoirs are generally at below-average levels and down over last year, except for in the eastern part of the state where wetter conditions have kept levels above average in several reservoirs.

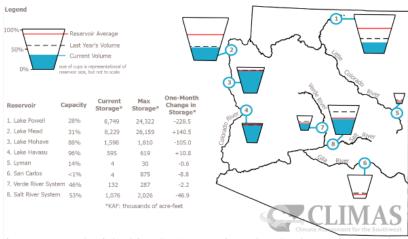


Figure 1. Arizona reservoir volumes for the end of September 2025 as a percent of capacity. The map depicts the average volume and last year storage for each reservoir. The table also lists current and maximum storage, and change in storage since last month.

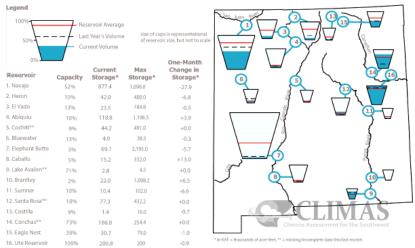
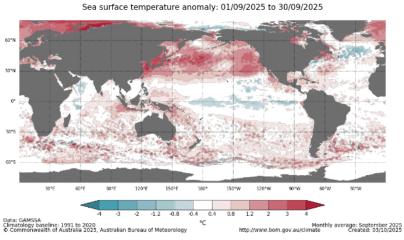
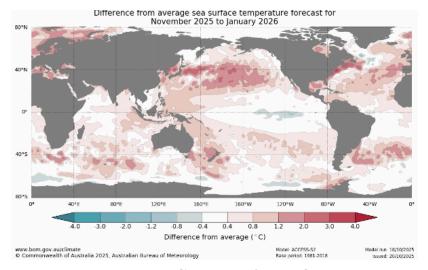


Figure 2. New Mexico reservoir volumes for end of September 2025 as a percent of capacity. The map depicts the average volume and last

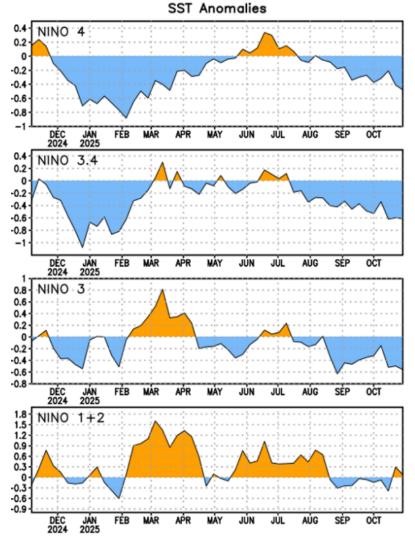

The map gives a representation of current storage for reservoirs in Arizona and New Mexico. Reservoir locations are numbered within the blue circles on the map, corresponding to the reservoirs listed in the table. The cup next to each reservoir shows the current storage (blue fill) as a percent of total capacity. Note that while the size of each cup varies with the size of the reservoir, these are representational and not to scale. Each cup also represents last year's storage (dotted line) and the 1991–2020 reservoir average (red line). The table details more exactly the current capacity (listed as a percent of maximum storage). Current and maximum storage are given in thousands of acre-feet for each reservoir. One acre-foot is the volume of water sufficient to cover an acre of land to a depth of 1 foot (approximately 325,851 gallons). On average, 1 acre-foot of water is enough to meet the demands of four people for a year. The last column of the table lists an increase or decrease in storage since last month. A line indicates no change. These data are based on reservoir reports updated monthly by the Natural

.

BOR: New Mexico Dashboard

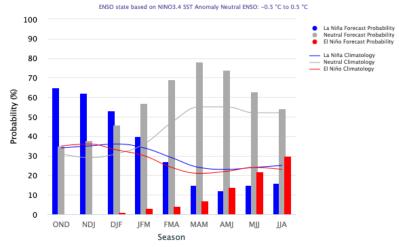

ENSO Tracker

September average sea surface temperatures (SSTs) show the pattern of an emerging weak La Niña, with cooler-than-average SSTs in the central and eastern equatorial Pacific and warmer-than-average SSTs in the western margin of the equatorial Pacific.

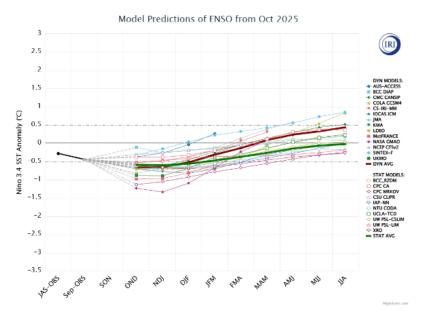

Source: Australian Bureau of Meteorology

November–January SSTs could follow the pattern shown in this model forecast, which shows La Niña-like cool SSTs in the central-eastern Pacific, but not cool enough to meet the La Niña threshold of 0.5°C cooler-than-average for the Nina 3.4 SST monitoring region. However, other models predict conditions that meet La Niña criteria—see the plume plot of individual ENSO model forecasts below.

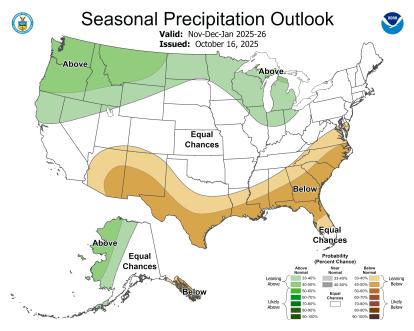
Source: Australian Bureau of Meteorology


Weekly SST observations have crossed the La Niña threshold —0.5°C cooler than average SSTs for the Nina 3.4 monitoring region—beginning in late September. Weekly SSTs in adjacent monitoring regions Nino 3 and Nino 4 have also measured increasingly cooler than average; the extent of the area of cool SSTs is large, at least for now.

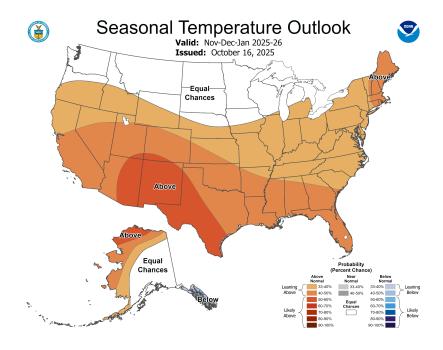
Source: Climate Prediction Center (NOAA)


La Niña is the most-favored ENSO state, according to model forecasts, for the remaining fall months and upcoming winter (October–December, November–January, and December–February forecast windows). Starting with the January–March forecast window, ENSO-neutral is the most favored state among the model forecasts.

Source: The International Research Institute for Climate and Society, Columbia University Climate School

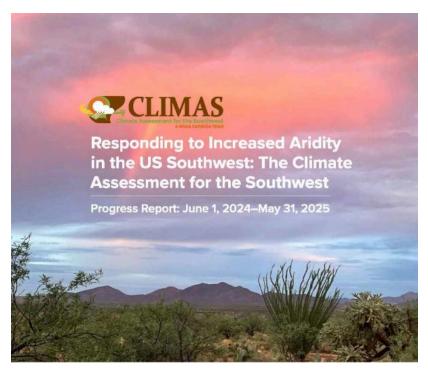

The plume of individual model ENSO forecasts shows models predicting weak or moderate La Niña conditions (Nino 3.4 SSTs 0.5°C–1.5°C cooler-than average) or ENSO neutral conditions (Nino 3.4 SSTs within 0.5°C of average) in the most immediate forecast windows, with La Niña-predicting models showing peak intensity of La Niña in either October–December, November–January, or December–February seasons, before relaxing back toward ENSO-neutral conditions.

Source: The International Research Institute for Climate and Society, Columbia University Climate School


Seasonal Forecasts

The November–January seasonal precipitation forecast indicates probabilities that *lean* toward below normal precipitation (33–50% chance) for an area that includes most of Arizona and New Mexico, with southern New Mexico and southeastern Arizona falling in the region of relatively higher probabilities (40–50% chance). This seasonal forecast is informed by the expected La Niña conditions, how they play out in different model simulations of the upcoming season, and the tendencies of past years' seasonal climate during similar La Niña conditions.

Source: Climate Prediction Center (NOAA)


The November–January seasonal temperature forecast calls for above normal temperatures *likely* (50–60% chance) for an area that includes New Mexico and the eastern half of Arizona. The forecast also *leans* toward above normal temperatures (giving 40–50% chance) for a larger area that includes the remaining part of Arizona. This seasonal forecast is informed by the expected La Niña and the observed long-term trend of increasing temperatures.

Source: Climate Prediction Center (NOAA)

2024-2025 Annual Report

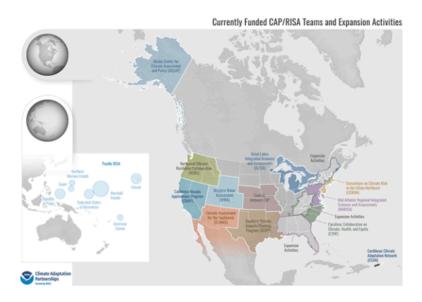
CLIMAS's 2024-2025 Annual Report is now available! The Climate Assessment for the Southwest, or CLIMAS, program serves the people of Arizona and New Mexico by providing information to help communities, resource managers, and agricultural producers make decisions about drought, wildfire, extreme weather, and the human health impacts of these phenomena. CLIMAS has been funded by NOAA since 1998. The 2024-2025 Annual Report details some of CLIMAS's work throughout the past year, providing updates on research projects as well as major accomplishments.

2024-2025 CLIMAS Annual Report

Southwest Climate Podcast

October 2025 SW Climate Podcast - The After Monsoon

Recorded 10/03/2025, Aired 10/06/2025


In this month's Southwest Climate
Podcast hosts Zack Guido and Mike
Crimmins kick it off by saying goodbye
to the monsoon. They do a recap of the
season with a focus on last month's
rain events. September was
interesting to say the least - this leads
to a philosophical discussion on
whether it is the same flavor as the rest
of the monsoon. The hosts tie up the

episode with what's on the horizon for this coming winter & the ENSO forecast.

Listen Here

About CLIMAS

The Climate Assessment for the Southwest (CLIMAS) program was established in 1998 as part of the National Oceanic and Atmospheric Administration's Climate Adaptation Partnerships (CAP) Program (formerly known as Regional Integrated Sciences and Assessments, or RISA). CLIMAS—housed at the University of Arizona's Institute of the Environment—is a collaboration between the University of Arizona and New Mexico State University. The CLIMAS team is made up of experts from a variety of social, physical, and natural sciences who work with partners across the Southwest to develop sustainable answers to regional climate challenges.

Learn more about the NOAA CAP program here

Disclaimer

This packet contains official and non-official forecasts, as well as other information. While we make every effort to verify this information, please understand that we do not warrant the accuracy of any of these materials. The user assumes the entire risk related to the use of this data. CLIMAS, and UA Cooperative Extension disclaim any and all warranties, whether expressed or implied, including (without limitation) any implied warranties of merchantability or fitness for a particular purpose. In no event will CLIMAS, UA Cooperative Extension, or The University of Arizona be liable to you or to any third party for any direct, indirect, incidental, consequential, special or exemplary damages or lost profit resulting from any use or misuse of this data.

Southwest Climate Mike Crimmins & Matt

Outlook contributors: Meko