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Abstract

Purpose

In support of science and society, the USA National Phenology Network (USA-NPN) main-

tains a rapidly growing, continental-scale, species-rich dataset of plant and animal phenol-

ogy observations that with over 10 million records is the largest such database in the United

States. The aim of this study was to explore the potential that exists in the broad and rich vol-

unteer-collected dataset maintained by the USA-NPN for constructing models predicting the

timing of phenological transition across species’ ranges within the continental United States.

Contributed voluntarily by professional and citizen scientists, these opportunistically col-

lected observations are characterized by spatial clustering, inconsistent spatial and tempo-

ral sampling, and short temporal depth (2009-present). Whether data exhibiting such

limitations can be used to develop predictive models appropriate for use across large geo-

graphic regions has not yet been explored.

Methods

We constructed predictive models for phenophases that are the most abundant in the data-

base and also relevant to management applications for all species with available data,

regardless of plant growth habit, location, geographic extent, or temporal depth of the obser-

vations. We implemented a very basic model formulation—thermal time models with a fixed

start date.

Results

Sufficient data were available to construct 107 individual species × phenophase models.

Remarkably, given the limited temporal depth of this dataset and the simple modeling

approach used, fifteen of these models (14%) met our criteria for model fit and error. The

majority of these models represented the “breaking leaf buds” and “leaves” phenophases

and represented shrub or tree growth forms. Accumulated growing degree day (GDD)
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thresholds that emerged ranged from 454 GDDs (Amelanchier canadensis-breaking leaf

buds) to 1,300 GDDs (Prunus serotina-open flowers). Such candidate thermal time thresh-

olds can be used to produce real-time and short-term forecast maps of the timing of these

phenophase transition. In addition, many of the candidate models that emerged were suit-

able for use across the majority of the species’ geographic ranges. Real-time and forecast

maps of phenophase transitions could support a wide range of natural resource manage-

ment applications, including invasive plant management, issuing asthma and allergy alerts,

and anticipating frost damage for crops in vulnerable states.

Implications

Our finding that several viable thermal time threshold models that work across the majority

of the species ranges could be constructed from the USA-NPN database provides clear evi-

dence that great potential exists this dataset to develop more enhanced predictive models

for additional species and phenophases. Further, the candidate models that emerged have

immediate utility for supporting a wide range of management applications.

Introduction

Phenology, the timing of life cycle events in plants and animals, is responsive in many species

to immediate environmental conditions such as temperature and precipitation [1, 2, 3]. Pre-

dicting when a species will undergo a phenological transition at a particular location—for

example, transitioning from closed flower buds to open flowers—has great value for a wide

range of short-term natural resource management applications. Optimal timing of manage-

ment activities such as pest, pathogen, and invasive species detection or treatment; thinning,

burning, and chemical treatments; and planting and harvest activities can all benefit from real-

time information and short-term forecasts of phenological transitions [4, 5]. Further, advance

knowledge of the timing of events in key species such as flowering in ornamental trees or leaf

color change in deciduous trees can improve planning for recreational activities [6].

The USA National Phenology Network (USA-NPN) was established in 2007 to meet the

growing needs for phenological data and derived products within the United States [7]. The

USA-NPN collects, stores, and shares observations of plant and animal phenology to support

and enhance management decisions, and to increase awareness of phenology, its relation-

ship to environmental conditions and its influence on ecosystems [8]. In particular, the

USA-NPN aims to produce national- to continental-scale data and information including

near real-time maps and short-term predictions of the timing of phenological transitions to

support a broad ranges of uses in sectors encompassing natural resources, human health,

and agriculture.

As of July, 2017, the USA-NPN housed over 10 million records of plant and animal phenol-

ogy from across the U.S. in the National Phenology Database (NPDb); these data can serve as

the raw materials for establishing environmental drivers to phenological transitions in individ-

ual species. Once the relationships between environmental conditions and the timing of phe-

nological transitions in individual species are established, these models can be used to produce

real-time and short-term forecast maps of the timing of such transitions to directly support

natural resource decision-making. Several recent studies have used data maintained by the

Phenology models from USA National Phenology Network observations
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USA-NPN to identify triggers to phenological transitions [9–14], though these studies have

focused on a small number of species and phenophases.

For many species, the cues to phenological transition are unknown. Determining cues and

thereby establishing predictive models of phenophase transitions requires ample reports of the

date of phenological transitions for a particular species with high temporal precision. Often,

such models are constructed using long-term records from a single location or region [1, 2, 15,

16], limiting their applicability for other locations. Alternatively, records with short temporal

depth representing multiple locations can be used [13, 17, 18], though pooling observations

from different portions of a species range can introduce further complexities, because differ-

ences in phenology observed across the range may reflect local adaption [19]. The ideal dataset

for determining cues to phenological transitions for a species would be comprised of repeated

observations of individual plants over a long period of time, with high temporal frequency, at

many locations distributed across the species range—ultimately, what the USA-NPN endeav-

ors to assemble.

The goal of this study was to explore the potential of the data maintained in the NDPb

for establishing models of phenophase transition to be used to generate real-time and pre-

dictive maps [20]. The data housed in the NPDb are contributed by thousands of volunteers

and professional natural resource managers and scientists [21]. As such, this data resource

is species-rich and represents nearly 10,000 observation locations from across the United

States [22]. However, these data have been collected opportunistically and are geographi-

cally unbalanced: nearly half of all USA-NPN sites reporting phenology data are located

within an urban area (unpubl data). Further, the extent to which individual plants are

observed in consecutive years is low, and observations may be collected with inconsistent

frequency within a year. The precision around the date that a transition is captured is within

7 days for about half of estimated onset dates in the NPDb [23]. It is not known the extent to

which these characteristics impact the suitability of the dataset for constructing predictive

models.

We constructed simple thermal time models of phenological transitions using data housed

in the NPDb for as many species and spring- and summer-season phenophases as possible.

We implemented a single formulation of thermal time models because our focus was on

exploring the potential for constructing models and generating predictive maps using the

data, rather than definitively determining the cues to phenological transitions in various spe-

cies. Thermal time is a viable option for this study because temperature performs at least as

well as more complex model formulations at predicting the timing of phenological transi-

tions in many temperate plant species’ spring- and summer-season phenophases [3, 13, 16,

24, 25].

Our objectives for this study were 1) to construct simple thermal time models of phenologi-

cal transitions using data housed in the NPDb for as many species and spring- and summer-

season phenophases was as possible given available data, and 2) to identify “candidate” thermal

time models that could be used to produce predictive maps of phenological transition. The

USA-NPN produces daily real-time and short-term forecast maps of accumulated growing

degree days (AGDD; [20]) and the Extended Spring Indices [26–28] for the United States; the

workflow employed to generate these maps could be readily extended to phenological transi-

tions that are cued by accumulated heat. We also expected this effort to reveal species × pheno-

phase combinations for which increased sampling frequency, additional sampling locations, or

additional driving variables may be necessary to yield viable predictive models. Further, we

anticipated that this analysis might reveal species in which local adaptation is at play, necessi-

tating an alternative approach for predictive modeling.

Phenology models from USA National Phenology Network observations
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Materials and methods

Phenology data

The phenology data maintained by the USA-NPN are contributed by thousands of volunteer

citizen scientists from across the United States through the phenology observing program,

Nature’s Notebook [21]. Over 1,200 plant and animal species are available for monitoring using

vetted standardized phenophase definitions and protocols [29].

Data housed within the USA-NPN’s National Phenology Database are structured as “status”

data, meaning that on each date an observation of an individual plant is made, the status of a

phenophase is recorded (“yes” if it was occurring, and “no” if it was not; [29]). In this analysis,

we evaluated the date of first yes (i.e., the first day of year [DOY] in which a phenophase had a

positive observation) for four phenophases, “breaking leaf buds,” “leaves,” “open flowers,” and

“ripe fruits.” We accessed the “site phenometric” data type [30], which returns the mean date

of first “yes” for all individuals of the species that are monitored at a site. If only a single indi-

vidual of a species is monitored at a site, the values for this individual are used. We chose the

“breaking leaf buds,” “leaves,” “open flowers,” and “ripe fruits” phenophases because they best

represent the full expression of a state in a plant and are included in> 94% of the USA-NPN’s

species-specific plant phenology protocols [29].

Thermal-time models

We constructed species and phenophase-specific thermal time models, which use growing

degree days as forcing units based on a fixed start date to predict the date of a phenophase

transition [2, 31, 32]. For each of these models, the phenology observations from the NPDb

served as the inputs, and accumulated temperature thresholds were the intended output. We

extracted site phenometric records for all possible combinations of species × phenophase (for

“breaking leaf buds,” “leaves,” “open flowers,” and “ripe fruits”) from the NPDb on September

25, 2016 using the USA-NPN’s application program interface (API) for the period January 1,

2009 through September 25, 2016 [30]. We retained the first “yes” record following Jan 1 for a

species × phenophase at a site. Observations for 2009–2015 were used to construct models,

and observations from 2016 were used for model validation. We followed this approach for

splitting data into calibration and validation pools, rather than a random 50–50 split or other

split, to maximize sample sizes for model construction.

We trimmed the dataset to retain records where the number of days between the mean first

“yes” for a phenophase and the mean prior “no” was < 15 days. Gerst et al. [33] demonstrate

that in instances when site-level information is important, as in the present study, data users

should cautiously constrain the temporal window between the prior “no” and the first “yes.”

We chose 15 days as a threshold in an attempt to maximize sample size while constraining the

error in onset date, represented as the temporal window between the prior “no” and the first

“yes.”

We excluded records with days of first “yes” occurring after particular cut-offs to minimize

the influence of outliers: for the “breaking leaf buds” and “leaves” phenophases, this cut-off

was DOY 172 (June 21, the first day of summer, after which we expected to see few onsets of

breaking leaf buds and leaves); for the “open flowers,” and “ripe fruits” phenophases, this cut-

off was DOY 213 (Aug 1, a date after which we expected to see few onsets of open flowers and

ripe fruits). We required a minimum of 30 site × year combinations for each analysis. Finally,

we excluded the few records for Alaska because of the lack of climate data for these regions.

We constructed universal accumulated growing degree day (AGDD) thresholds for each

species × phenophase independently. We define a universal AGDD threshold as the AGDD

Phenology models from USA National Phenology Network observations
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value associated with the onset DOY of a phenophase independent of year or site location.

AGDD was determined by the accumulated heat units (0˚C base temperature) from January

1st to the first reported “yes” DOY for the phenophase at each sampling location and for each

year.

We used PRISM daily gridded temperature data time-series [34, 35] (4km spatial resolu-

tion) based on site latitude and longitude to determine daily heat units. This yielded an AGDD

value for each site × year record for each species × phenophase.

To calculate thresholds for each species × phenophase, we averaged the derived the AGDD

values across site × years (2009–2015). Next, for each species × phenophase, we determined

the actual DOY the AGDD threshold was met for each site × year (2009–2016) by repeating

the calculation of AGDD at each location starting on January 1st and returning the DOY the

threshold was met. This allowed us to evaluate how well the candidate thresholds performed at

predicting the DOY for calibration data points (2009–2015) as well for independent validation

data points (2016). All model construction and evaluation was performed in R [36].

Null models

For each species × phenophase combination, we constructed null models by calculating the

mean of the mean DOY of first reported “yes” across site × years for the period 2009–2015.

This value was then used to predict the phenophase transition for each year by determining

the DOY the threshold value was met in each site × year. This predicted DOY was differenced

from the actual observed DOY to assess the performance of this model. These null models

served as a basis for comparing the performance of our AGDD models.

Evaluating model performance

To evaluate model performance, we calculated mean absolute error (MAE), root mean squared

error (RMSE), Nash-Sutcliffe model efficiency coefficient (ME) [37], and R2 for all species ×
phenophase models for both the 2009–2015 development dataset and the 2016 validation data-

set. MAE and RMSE describe the difference between modeled and observed phenophase dates

for each species × phenophase combination. ME compares the performance of the AGDD

threshold models with that of the null models; ME can range from −1 to 1, where 1 is a per-

fect match of modeled to observed data. A positive ME indicates that the AGDD model per-

forms better than the null model for a species × phenophase, meaning the modeled threshold

yielded fewer days between the predicted and reported DOY of onset compared to the null

model. We established minimum criteria for further consideration of candidate models of

ME� 0.4 [25], R2� 0.5, and MAE� 10 days. An MAE of 10 days was selected because it is

consistent with other similar, recent studies [13, 16]. For each site × year for each candidate

model, we differenced the predicted and reported day of onset for both the 2009–2015 and

2016 datasets.

Evaluating model geographic extensibility

For the models that met minimum criteria for model fit and error, and for those species with

readily available distributional range data, we determined how representative the model was

across the range of the species using the 2009–2015 dataset. Our logic was to extend the model

to portions of the species range with temperature conditions represented by the locations—or

calibration points—used to construct the models.

We used mean spring temperature for this evaluation because it is a strong proxy for the

continuously increasing AGDD variable used in the models. Spring temperatures were calcu-

lated by averaging the long-term (1981–2010) mean January, February, March, and April

Phenology models from USA National Phenology Network observations
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(JFMA) temperature layers [34]. We extracted the spring temperature values for the calibra-

tion points from this gridded layer using ArcGIS 10.1. Next, for each species × phenophase

combination, we clipped this spring temperature grid using a shapefile of the species’ geo-

graphic distribution [38]. Finally, for each species × phenophase model, we determined the

portion of the species range to which the model could be extended by limiting the range to

locations with spring temperatures falling within the climate envelope of the calibration

points.

Demonstrating the use of models in short-term forecast map production

Thermal time models that emerge through this effort could be used by USA-NPN to produce

daily and short-term forecast maps predicting the timing of phenophase transitions several

days into the future on a nightly basis using available gridded temperature forecasts. We

demonstrate this process using one of the candidate models that emerged through this study:

the model forHamamelis virginiana–leaves. We generated a map to show the DOY that the

threshold for this species × phenophase was met in 2016 at all locations across the continental

United States by calculating AGDDs from January 1st and returning the DOY the threshold

was met. Next, we clipped this map to the species distribution, as dates of a phenophase transi-

tion for locations outside of a species distribution are meaningless. Finally, we further clipped

the map to the proportion of the species’ range that fell within the climate envelope of the cali-

bration points as a way of characterizing the model’s geographic extensibility.

Results

Accumulated growing degree day models

There were sufficient observations in the NPDb to construct models for 107

species × phenophase combinations. The data used in constructing these 107 models totaled

10,604 unique site × species × year locations. Of these 107 models, 26 (24%) exhibited ME

values� 0.4, indicating that the threshold model performed better than the null model. We

constrained this set of models by applying our minimum criteria for R2 and MAE, resulting in

15 candidate models that met all minimum criteria: one representing the “breaking leaf buds”

phenophase, 7 representing “leaves,” and 7 representing “open flowers” (Table 1). Details for

species × phenophase models that did not meet these criteria are presented in S1 Table.

Fourteen of the 15 candidate models were for plants with the shrub, tree, or shrub/tree

growth form, whereas one model represented non-woody growth form, based on the USDA

PLANTS database [39] (Table 1). “Open flowers” was the only phenophase with high-perform-

ing models across all growth forms (S1 Fig). The mean (± SD) for the 15 candidate models was

7.1 ± 1.8 days and 0.76 ± 0.10 for MAE and R2, respectively. Sites used in model construction,

a total of 10,604 unique site × species × year locations, were spread across the continental

United States, with greater concentration in the eastern U.S. (Fig 1). The dataset used in

constructing the 15 candidate models was comprised of 1,893 unique site × species × year loca-

tions, and were similarly spread across the continental United States, with greater concentra-

tion in the eastern U.S. (Fig 1).

Accumulated GDD thresholds that emerged for the candidate species × phenophases evalu-

ated ranged from 454 GDDs (Amelanchier canadensis-breaking leaf buds) to 1,300 GDDs (Pru-
nus serotina-open flowers, Table 1).

When evaluated against the independent 2016 validation points, the mean (± SD) for the 15

candidate models was 9.82 ± 3.74 days and 0.66 ± 0.21 for MAE and R2, respectively (Table 1),

although some models (e.g., Amelanchier canadensis-leaves, Forsythia spp.-open flowers)

exhibited nearly identical values when run with development and validation datasets.

Phenology models from USA National Phenology Network observations
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In all candidate species × phenophase models, the difference between the predicted versus

observed onset DOY value varied by site. Maps depicting the predicted-observed days for

development (2009–2015) and validation (2016) data points for the 15 candidate models

appear in S1 Appendix. The predicted-observed onset DOY show a geographic pattern in sev-

eral of the candidate species × phenophase models. For example, the Cercis canadensis–leaves

model predicts the onset of the “leaves” phenophase too late in nearly all northern sites and

too early in nearly all southern sites (Fig 2). This pattern is also apparent in Cornus florida-
leaves, Forsythia spp.-open flowers, Forsythia spp.-leaves, and Prunus serotina-open flowers

(S1 Fig).

Table 1. Details pertaining to candidate thermal time species × phenophase models that emerged from an evaluation of data maintained by the

USA National Phenology Network, including mean absolute error (MAE), root mean square error (RMSE), and Nash-Sutcliffe model efficiency

(NSME).

Species Pheno-

phase

Growth

habit

2009–

15 n

MAE

Null

model

RMSE

Null

model

2009–

15 MAE

2009–

15

RMSE

2009–

15 r2

NSME 2016

n

2016

MAE

2016

RMSE

2016

r2

% of range

model

extends to

AGDD

Threshold

Amelanchier

canadensis

(Canadian

serviceberry)

breaking

leaf buds

shrub/

tree

33 12.4 15.1 7.3 9.1 0.71 0.64 4 10.8 12.9 0.52 N/A 454

Forsythia spp.

(forsythia)

leaves shrub 149 14.9 17.6 7.0 8.8 0.80 0.75 19 5.9 8.6 0.59 N/A 681

Amelanchier

canadensis

(Canadian

serviceberry)

leaves shrub/

tree

37 12.5 15.4 3.9 4.5 0.92 0.91 4 7.5 7.9 0.86 N/A 646

Cercis canadensis

(eastern redbud)

leaves shrub/

tree

92 15.4 19.5 9.3 12.3 0.74 0.60 22 7.8 10.1 0.92 99.8% 1,132

Cornus florida

(flowering

dogwood)

leaves shrub/

tree

178 12.5 15.8 9.3 11.9 0.65 0.43 42 10.5 13.6 0.73 93.9% 985

Hamamelis

virginiana

(American

witchhazel)

leaves shrub/

tree

33 9.1 12.0 6.6 9.3 0.63 0.40 13 14.1 15.7 0.80 49.8% 737

Betula papyrifera

(paper birch)

leaves tree 79 8.6 11.3 6.4 7.9 0.71 0.52 15 6.0 9.0 0.55 93.3% 655

Carya glabra

(pignut hickory)

leaves tree 31 13.5 19.1 8.4 11.8 0.73 0.62 6 9.3 11.6 0.65 96.1% 993

Maianthemum

canadense

(Canada

mayflower)

open

flowers

forb/herb 56 11.8 15.0 8.1 10.2 0.58 0.53 26 9.2 12.2 0.33 N/A 1,040

Forsythia spp.

(forsythia)

open

flowers

shrub 137 16.8 20.1 6.5 8.8 0.83 0.81 19 8.9 12.8 0.92 N/A 458

Vaccinium

corymbosum

(highbush

blueberry)

open

flowers

shrub 36 26.0 29.4 8.2 12.5 0.82 0.82 5 6.6 9.1 0.74 N/A 891

Amelanchier

canadensis

(Canadian

serviceberry)

open

flowers

shrub/

tree

35 12.7 15.7 3.5 4.5 0.92 0.92 4 5.3 6.2 0.42 N/A 651

Prunus serotina

(black cherry)

open

flowers

shrub/

tree

85 18.8 26.4 9.0 11.2 0.85 0.82 22 18.3 21.5 0.83 97.2% 1,300

Betula papyrifera

(paper birch)

open

flowers

tree 32 8.7 10.4 5.8 7.5 0.75 0.48 6 15.2 20.8 0.80 89.0% 571

Quercus alba (white

oak)

open

flowers

tree 48 15.0 17.7 7.5 9.9 0.80 0.69 18 11.9 15.6 0.22 88.3% 948

https://doi.org/10.1371/journal.pone.0182919.t001
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Geographic extensibility

Species range maps were available for only 8 of the 15 candidate models. The proportion of the

species range to which models could be extended ranged from 50% (Hamamelis virginiana–
leaves) to 99.8% (Cercis canadensis–leaves; Table 1, Fig 3). For the species where the models

did not extend to the majority of the species range, such asHamamelis virginiana-leaves and

Quercus alba–open flowers (Fig 3), the portions of the range that were excluded from the

model extensibility were the extreme northern and southern regions.

Generating forecast maps with candidate models

An example of how the candidate models that emerged through this effort could be put into

production to generate daily and short-term forecast maps predicting the timing of pheno-

phase transitions several days into the future on a nightly basis is presented in Fig 4. Across the

entire continental U.S., the DOY the threshold forHamamelis virginiana–leaves was met ran-

ged from Jan 1 (DOY 1) to Jun 22 (DOY 173; Fig 4b). Within the species range, the DOY this

threshold was met ranged from Jan 27 (DOY 27) to Jun 20 (DOY 171; Fig 4c); once this map

was further clipped to the proportion of the species’ range that fell within the climate envelope

of the calibration points, the DOY this threshold was met ranged from Mar 12 (DOY 71) to

May 21 (DOY 141; Fig 4d).

Discussion

The aim of this study was to explore the potential that exists in the broad and rich volunteer-

collected dataset maintained by the USA-NPN for constructing models predicting the timing

of phenological transition across large geographic regions. Remarkably, given the limited

Fig 1. Geographic distribution of species × year data points used in constructing 107 unique species ×
phenophase models. Black dots represent data points for all models (n = 10,604); green dots represent points used in

constructing the 15 candidate models (n = 1,893).

https://doi.org/10.1371/journal.pone.0182919.g001
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temporal depth of this dataset and the simple modeling approach used, this effort resulted in

several models that performed well across much of the known species distributions. Of the 15

candidate models that emerged, the majority represented the “leaves” phenophase and the

shrubs and trees growth habit (Table 1, S1 Fig), similar to recent studies using data maintained

by the USA-NPN [9–13]. Another large portion (47%) of the candidate models that emerged

from this analysis represented the “open flowers” phenophase. A single candidate model,

Maianthemum canadense-open flowers, represented the forb/herb growth form. Our ability to

develop high-performing models with a simple thermal time approach suggests that the data

in the NPDb hold promise for developing and enhancing models predicting phenological tran-

sitions, beyond what is accomplished in this simple approach. Further, these models have

immediate utility, as they can be used in a wide range of management applications.

For a small number of the species × phenophase transitions for which candidate models

emerged in this study, models have been published previously. For example, both Melaas et al.

Fig 2. Observation locations used to a) construct and b) test the thermal time model for Cercis

canadensis-leaves. Point size and color represent the difference, in days, between the predicted and the

observed day of year for leaf-out. Locations where the model predicted leaves earlier than observer reports

are shown in orange; locations where the model predicted leaves later than observer reports are shown in

blue.

https://doi.org/10.1371/journal.pone.0182919.g002
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[13] and Jeong et al. [11] established predictive models of leaf phenophases for Betula papyfera
using slightly more complex formulations; RMSE values reported for these models varied

from those in the present study by 1–2 days. Herms [40] report accumulated temperature

thresholds for “first bloom” of two species of Forsythia and Prunus serotina based on a 50˚F

base temperature. To our knowledge, the thermal time thresholds that emerged in this study

are the first predictive phenology models for several of the species × phenophase transitions to

be identified.

Geographic extensibility

Whether a candidate model can be confidently utilized to predict the timing of phenological

transition across a species’ entire geographic range is an important consideration for

Fig 3. Estimates of geographic extensibility for eight species × phenophase thermal time models. a)

Betula papyfera–open flowers; b) Betula papyfera–leaves; c) Carya glabra–leaves; d) Cercis canadensis-

leaves; e) Cornus florida–leaves; f) Hamamelis virginiana-leaves; g) Prunus serotina–open flowers; h)

Quercus alba–open flowers. The known species range within the US is represented by the shaded polygon;

the green polygon represents the portion of the range represented by the model. Black points represent

observation locations used to construct the models.

https://doi.org/10.1371/journal.pone.0182919.g003
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producing phenology maps. Several of our candidate models were developed using observa-

tions dispersed across wide latitudinal ranges. Encouragingly, the simple approach employed

here demonstrates that for most of the candidate models, the samples of development points

represent the range of conditions within the species’ range reasonably well. More specifically,

for the 8 candidate models where we could explore geographic extensibility, the majority of

the species’ range fell within the climate envelope of the calibration points. This finding under-

scores the utility of the threshold models that emerged from this study; maps generated using

these thresholds appear to be viable across most of the species ranges.

Fig 4. Proposed production workflow for the Hamamelis virginiana–leaves model to generate daily maps and short-term forecasts of leaf-

out. a) Calibration points used to construct the model overlayed on Hamamelis virginiana range (Little 1999); b) model run on 2016 daily temperature

data to show day of year the AGDD threshold was met; c) model results clipped to the distribution of Hamamelis virginiana; and d) the distribution

further clipped to the proportion of the species’ range that fell within the climate envelope of the calibration points.

https://doi.org/10.1371/journal.pone.0182919.g004
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Applications for predictive phenology models

Though the focus of this effort was not to identify the exact trigger or set of triggers to pheno-

logical transitions, several high-performing models emerged that have the potential for use in

a wide range of applications.

Predicting when a species will undergo a phenological transition, e.g., transitioning from

closed flower buds to open flowers at a particular location, has value for a wide range of short-

term natural resource management applications. For example, if the developmental status of a

plant—such as whether buds have formed or broken yet—can be predicted across a region

based on the accumulation of heat units, then local weather forecast offices can selectively

issue frost warnings for upcoming cold events, broadcasting warnings to growers in regions

where plants may be vulnerable [41]. Similarly, national-scale maps of leaf-out or flowering

status for common horticultural plant species can be used by media outlets to warn home-

owners of the risk of impending frost damage to particular species based on forecasted weather

events [42]. Real-time and short-term forecast maps indicating the flowering status of particu-

larly allergenic species can be used to anticipate regional allergy outbreaks and to warn allergy

sufferers of especially problematic conditions [43, 44], and predictive maps of fruit ripening

could be used to anticipate the timing of crops coming to market [45]. Finally, optimal timing

of management activities such as pest, pathogen, and invasive species detection or treatment

can benefit from real-time information and short-term forecasts of phenological transitions

[4, 5].

The candidate AGDD threshold models developed in the present analysis could easily be

folded into the USA-NPN’s existing workflow for producing daily and short-term forecast

maps of accumulated growing degree days and the Extended Spring Indices for the United

States [20], predicting the timing of phenophase transitions several days into the future on a

nightly basis using available gridded temperature forecasts. We demonstrate this potential in

Fig 4, which shows the DOY on which first leaves forHamamelis virginiana are predicted for

the portion of the species range in which the “leaves” model would be suitable.

Predictive maps generated using the models could also serve as a valuable way to further

engage participants in Nature’s Notebook, the USA-NPN’s phenology observing program that

populates the National Phenology Database. These additional incoming observations for par-

ticular species × phenophase combinations could then be folded into the development or vali-

dation datasets, leading to real-time model refinement. These incoming data points could be

particularly valuable to fill in geographic regions or climate conditions not represented by

existing data points, and thereby limiting model extensibility, as withHamamelis virginiana-
leaves (Fig 4).

Opportunities for model improvement

Many (86%) of the species × phenophase combinations evaluated did not yield viable models

(S1 Table). There are several possible reasons for this. First, the phenophase transitions for

these species may not solely cued by temperature accumulated from a fixed January 1 start

date; other variables not included in the models may be critical to improve model performance

above our minimum thresholds for some species, including day length, frost events, specific

weather events, or biotic conditions such as competition [46–49]. Second, local adaptation, or

spatial unstationarity [49], may explain poor model fit in some species. Across geography, a

species’ sensitivity to particular environmental cues to phenology can vary [18, 50, 51]. In the

present study, we see evidence of local adaptation in Cercis canadensis when attempting to

predict the start time for the “leaves” phenophase. Though the universal AGDD threshold
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performs well enough for this species × phenophase to qualify as a candidate model, there is

clearly a latitudinal influence at play (Fig 2).

Finally, poor model performance could result from a lack of precision in the estimates of

phenophase onset used in model construction. In an effort to maximize sample sizes in this

model construction exercise, we allowed for up to 15 days between last reported “no” and first

reported “yes” for the phenophase at a site. This temporal imprecision introduces additional

non-climate related uncertainty around AGDD thresholds that negatively impacts model per-

formance. Alternatively, model performance may be high, but the measurement error may

result in poor model fit statistics. Imprecision in these estimates can be offset by large sample

sizes: larger samples can buffer the effects of outliers and are more likely to capture more of

the underlying landscape heterogeneity [33, 52]. However, for many of our species × pheno-

phase combinations, our development samples were comprised of fewer than 100 points,

and in nearly 30% of cases, fewer than 40 points (S1 Table). Accordingly, models for many

species × phenophase combinations could have failed to emerge from this effort because of the

combined effects of temporal imprecision and small sample sizes.

The issues of imprecise estimates of onset and small sample sizes in data curated by the

USA-NPN is improving; observations of plant phenology are continuously being contributed

to the NPDb by participants in Nature’s Notebook and also at dozens of U.S. National Ecologi-

cal Observatory Network (NEON) sites across the U.S. [53]. However, a key insight from the

present study is the large influence that imprecision around the onset dates in the data housed

in the NPDb can have on the ability to generate high-performing models. Researchers using

the data maintained by the USA-NPN for constructing predictive phenology models will want

to bear this in mind.

Future efforts to construct predictive models using phenology observations maintained by

the USA National Phenology Network could result in better performing models by incorporat-

ing a number of improvements, including an evaluation of different base temperatures [2, 32],

adding a variable start date [13], or adding a photoperiod control, a chill requirement, and/or

other abiotic variables. In addition, local adaptation could be accounted for either by con-

structing regional AGDD threshold models for some of these species (e.g., only locations

above or below a certain latitude) or by using more sophisticated approaches to account for

regional adaptation, as suggested by Liang [18].

Tradeoffs of sophisticated models. Applications requiring more precise spatially

explicit estimates of phenophase transitions than the candidate models identified through

this effort can offer may require more sophisticated modeling approaches. Such approaches

could include statistical models incorporating a wide range of explanatory variables as well

as process-based simulations. More complex model formulations may offer improvements

in model performance, though a major tradeoff of adding variables and contingencies to

predictive models of phenophase transition increases the complexity of producing and

updating maps on a nightly basis following USA-NPN’s existing workflow. Further, more

complex formulations can make real-time maps and short-term forecasts impossible, if vari-

ables included in the model are not available as gridded datasets and with the necessary

immediacy. Finally, models incorporating multiple variables necessitate increased sample

sizes.

Conclusions

This research supports to our prediction that the data maintained by the USA-NPN holds

promise for use in constructing models predicting the timing of phenological transition, as

established in previous studies using limited sets of species [9–14]. This simple model-building
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effort sets the stage for the development of more sophisticated models predicting phenological

transitions as the data housed in the NPDb grows. Further, this work demonstrates that in

many cases models constructed using data currently available from the USA-NPN can be suit-

able for use across species’ ranges. Finally, this effort highlights the importance of additional

phenology observations across space and time.

Supporting information

S1 Table. Species and phenophases for which there were sufficient data in the National

Phenology Database to construct thermal time models of phenophase onset. � denotes can-

didate species × phenophase models that emerged; AGDD thresholds identified through this

exercise are provided for these species × phenophases.

(XLSX)

S1 Fig. Count of candidate thermal time species × phenophases models constructed using

data housed in the National Phenology Data by phenophase and growth habit. Blue bars

represent the proportion of models that did not meet criteria for ME, MAE, and R2; orange

bars represent “candidate” models that did meet criteria.

(PDF)

S1 Appendix. Maps of observation locations used to construct (top panel) and test (bottom

panel) each of the species × phenophases thermal time models. Point size and color repre-

sent the difference, in days, between the predicted and the observed day of year for leaf-out.

Locations where the model predicted leaves earlier than observer reports are shown in orange;

locations where the model predicted leaves later than observer reports are shown in blue.

Interactive maps available at https://tinyurl.com/usanpn-agdd-models.

(DOCX)
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52. Tessarolo G, Rangel TF, Araújo MB, Hortal J. Uncertainty associated with survey design in Species Dis-

tribution Models. Divers Distrib. 2014; 20: 1258–1269.

53. Elmendorf SC, Jones KD, Cook BI, Diez JM, Enquist CAF, Hufft RA, et al. The plant phenology monitor-

ing design for The National Ecological Observatory Network. Ecosphere. 2016; 7: 1–16.

Phenology models from USA National Phenology Network observations

PLOS ONE | https://doi.org/10.1371/journal.pone.0182919 August 22, 2017 17 / 17

https://doi.org/10.1371/journal.pone.0004010
https://doi.org/10.1371/journal.pone.0004010
http://www.ncbi.nlm.nih.gov/pubmed/19104660
https://doi.org/10.1371/journal.pone.0182919

