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ABSTRACT 

This thesis provides the results of research that 

explores the relationship between climatic conditions and 

the incidence of valley fever in Pima County. Valley fever 

is caused by a soil-dwelling fungus, C. immitis r which 

responds to changes in climate conditions. 

Bivariate and compositing analyses provided the basic 

relationships necessary for the development of monthly 

multivariate models. The models are designed to predict 

deviation from mean incidence based on past, current, and 

forecast climate conditions. 

Temperature and precipitation are important predictors 

of incidence, and were used in model development. Winter 

temperature and precipitation variables were included in 

the model more frequently than variables in other seasons, 

and most variables were on the time scale of one year or 

more prior to the month being predicted. Model results 

were moderate, and months with high incidence can be 

predicted more accurately than months with low incidence. 
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Chapter 1 - Introduction 

Research in climate and health has gained momentum in 

recent years. Growing concern over the broad impacts of 

climate variability and climate change has lead to an 

increase in research initiatives designed to improve the 

understanding of those impacts. The body of research on 

overall effects of climate variability and change includes 

effects on agriculture, tourism, energy, water resources, 

and other areas as well as human health (McMichael 1997). 

To appreciate the ways in which climate change will impact 

a disease or health problem, a basic understanding of the 

relationship between climate and the disease is needed. 

With this understanding, the association between climate 

variability and disease can be explored. It is within this 

context that the research presented here is framed. This 

thesis presents research conducted to understand the 

relationship between climate variability and valley fever 

(coccidioidomycosis). 

Valley fever was first identified in Argentina in 18 92 

(Pappagianis 1980). The fungus causing the disease, 

CoccidiQides immitis (C. immitis) was first recognized 

within the United States in 1932 in California (Stewart 

1932), and has subsequently been linked to variations in 
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climate conditions. The research presented in this study, 

examining the relationship between valley fever incidence 

and climate, falls within the climate and health area, 

drawing from traditions in medical geography and applied 

climatology. 

1.1 Medical Geography 

As a sub-discipline, medical geography is broadly 

based and interdisciplinary, drawing on a wide variety of 

other fields of study including biology, epidemiology, 

sociology, parasitology, meteorology, biostatistics, and 

many others (Meade 1988). Within geography, medical 

studies often utilize methods in both human and physical 

geography by recognizing the importance of both areas to 

the understanding of patterns of disease and health care. 

Methods applied within the field can be qualitative or 

quantitative in nature, or a combination of both. Studies 

employing various statistical techniques are useful for 

comparing rates of disease in populations and rates of 

increase, while qualitative methods provide a means for 

determining individual health care access or disease 

acquisition through interviews and surveys. 



10 

Medical geographers add a "geographic perspective" to 

work on disease distribution and health care systems, and 

often collaborate with researchers in related fields. 

(Meade 1988). Medical geographers contribute beyond the 

field of geography by adding a spatial perspective to 

medical research (Meade 1988). Geographers employ methods 

to examine population and movement relationships, social 

institutions, and political controls that are related to 

disease patterns, as well as environmental characteristics 

associated with disease. With an integrative perspective, 

geography incorporates traditions and methods that are 

useful for understanding disease distribution across 

disciplines. 

Research in medical geography falls into two 

categories; disease ecology and health services research 

(Gaile 1989) . The main goal of research in disease ecology 

research is to understand the relationship between health 

and disease in the context of disease etiology, and to 

promote adaptations by people and/or the environment (Gaile 

1989). Disease ecology focuses on explaining patterns of 

morbidity and mortality, as they relate to social, 

environmental, and cultural processes. This category of 

medical geography can be further subdivided into studies of 



infectious and chronic diseases, as well as infant 

mortality and malnutrition (Gaile 198 9) . Alternatively, 

health services research examines a wide variety of health-

related issues including access to health care, equity, and 

social institutions present in the medical field. Relevant 

studies in health services research include work; by Sara 

McLafferty that examines health and disease in urban areas, 

and a recent trend in decreasing quality of life with 

respect to healthcare in inner cities (McLafferty 1990; 

McLafferty 1992). The approach in this thesis is empirical 

and quantitative in nature, and specifically fits into the 

disease ecology area of medical geography, through the 

study of an infectious disease. 

1.2 Climate and Health 

Climate and health research falls within the realm of 

applied climatology, which seeks to understand the general 

effects of climate variability and change on various 

aspects of society. Much of the research in the area of 

climate and human health focuses on the effects of climate 

change on disease outbreaks and health problems related to 

extreme events. The Intergovernmental Panel on Climate 

Change (IPCC) has included the effects of climate change on 
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human health in its second report (Houghton 1996). It is 

expected that climate change will impact health both 

directly and indirectly. Direct effects include increased 

mortality from heat waves and extreme weather events, while 

indirect effects include changes in disease incidence 

resulting from modifications in a vector's breeding habitat 

as well as modifications to the environment in which non-

vector pathogens live. 

In spite of recent attention by research agencies and 

the media, questions surrounding the influence of climate 

on disease do not reflect a new trend. Twenty years prior 

to the release of the IPCC s second report on climate 

change impacts, including the chapter on human health, the 

World Meteorological Organization addressed the impacts of 

climate variability on health at the World Climate 

Conference (Weihe 1979). The interest in the effect of 

climate on disease extends, however, even farther into the 

past. Haviland (1855) discusses observations made by 

Hippocrates approximately 2300 years ago with regard to the 

climate of a certain region and the type and severity of 

disease found in the location. It is believed that 

Hippocrates was the first physician to link disease with 

climate conditions (Snorrason 1964). Epidemics in the past 



13 

were analyzed with respect to temperature, wind speed and 

direction, air pollution, and air pressure, as well as the 

general season of the year (Haviland 1855). These early 

studies searched for a link between climate conditions and 

disease incidence, and are similar to studies being 

conducted today. Climate conditions have more recently 

been linked with specific chronic and infectious diseases 

including diabetes, leukemia, sclerosis, tuberculosis, 

appendicitis, and mental illness (Mills 1939). 

Susceptibility of humans to heat and cold is also a 

frequently mentioned stress, as well as allergens and 

pollutants (Mills 1939; Burakowski 1964; Dingle 1964). 

Studies conducted in the past are similar to current 

research in climate and health, however longer data records 

and more sophisticated techniques are now available. 

Thermal stress is a frequently cited example of a 

direct impact of climate change. Mortality increases more 

rapidly with very high temperatures than with extremely low 

temperatures, and mortality is lowest within a range of 

moderate temperatures (Houghton 1996). With climate 

change, it is expected that mortality related to high 

temperatures will increase as the number of deaths related 

to cold extremes decrease. However, it is likely that net 
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mortality will increase since more deaths are related to 

extremely high temperatures (Houghton 1996) . The 

variability of temperatures and the resulting impacts on 

humans within the United States has been well studied by 

geographers (Kalkstein et al. 1987; Kalkstein et al. 1996; 

Smoyer et al. , 2000). The majority of research conducted 

examining thermal stress has concentrated on mortality due 

to high temperatures in the summer season through the 

evaluation of heat indices and the development of a warning 

system (Kalkstein, 1983; Kalkstein, 1996). Other studies 

have examined winter weather stress (Kalkstein, 1987), 

however as previously stated, more deaths are related to 

high temperatures than extreme cold. 

Indirect effects of climate variability and change are 

often felt through the enlarged range and increased 

activity of a vector. Malaria is discussed frequently in 

the literature as having strong connections to climate 

conditions. The disease's vector, the Anopheles mosquito, 

requires warm, wet conditions, and is found in tropical 

regions (Epstein 1998). The reliance on moisture to 

support the mosquito suggests that incidence of malaria 

fluctuates with climate variability on an annual basis as 

well as inter-annually (Patz et al. 1998) . Also, it is 
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estimated that as the climate changes, according to likely-

predictors, the mosquito will be able to survive at both 

higher latitudes and higher elevations, and more people 

will be exposed to malaria (Epstein 1998). Within the 

western United States, recent studies on the plague 

(Parmenter et al. 1999) and hantavirus pulmonary syndrome 

(Engelthaler et al. 1999) have indicated the potential 

impact of climate variability on regional diseases. 

Research within the climate and health arena contains 

uncertainty. Researchers cannot be certain to what extent 

climate conditions will change. Given current practices. 

Global Circulation Models (GCM's) are able to predict 

worldwide climate conditions in the future, and work in 

concert with regional models. However, the extent of 

climate change will differ around the world, with some 

regions experiencing more extreme changes in climate 

conditions than others (Chan 1999). Therefore, diseases 

will not be impacted uniformly around the world. Also, as 

the climate changes, the vulnerability of populations may 

change (IPCC). People will adapt, and the impact may not 

be as negative as previously thought. 

A major driving force of climate variability within 

the United States, as well as around the world, is the El 
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Nino-Southern Oscillation (ENSO). As the Southern 

Oscillation Index fluctuates between negative (El Nino) and 

positive (La Nina) values, atmospheric circulation and sea 

surface temperatures change, and some regions receive more 

precipitation than usual while others experience drier than 

average conditions. With the shift in climate conditions, 

research shows that the incidence of diseases associated 

with rainfall changes as well, with an increase in 

incidence of diseases found in the Southwest associated 

with El Nino conditions (Parmenter et al. 1999; Engelthaler 

et al. 1999) . 

Growing concern over climate variability and change 

and its impact on disease has led to national research 

initiatives to examine possible implications. A National 

Assessment on the Potential Consequences of Climate 

Variability and Change for the Nation has been completed. 

This report summarizes the possible effects of climate 

change and variability on various sectors, including human 

health, urban areas, water quality and availability, and 

energy supplies. The vulnerability of the various sectors 

to climate variability in different regions of the United 

States was determined and reported. In addition, several 

"Regional Assessments" of climate impacts have been 
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conducted, including a study in the Southwest. The 

research in this thesis was completed as part of one of 

these, the Climate Impact Assessment for the Southwest 

Project (CLIMAS). 

1.3 Thesis Structure 

The following chapters outline the research that was 

conducted to explore climate and valley fever, and to 

develop a predictive incidence model. The thesis is 

structured around two stand-alone journal articles. The 

first is a literature review paper that has been accepted 

for publication in the journal Aerobiologia (Kolivras et 

al. 2001) . The second paper will be submitted to an 

appropriate journal, and it comprises exploratory data 

analyses and model development of relationships between 

climate and valley fever. Finally, the thesis is 

summarized with a set of brief concluding remarks. 
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Chapter 2 - Previous Research on Climatic Variability and 
Incidence of Valley Fever 

2.1 Introduction 

Coccidioidomycosis, commonly known as valley fever or 

cocci, is caused by Coccidioldes immitls (C. immltis), a 

fungus that grows in the soil of limited regions in the 

United States, as well as portions of Central and South 

America. Both humans and other mammals, such as dogs and 

cattle, are susceptible to the disease. Endemic regions 

within the United States (Fig. 2.1) include Kern County in 

the San Joaquin Valley of California; Pima, Pinal, and 

Maricopa counties of Arizona; and a small portion of Texas 

which runs east from the southeast corner of New Mexico to 

slightly beyond Laredo (Maddy 1965) 

It has been documented that there is a relationship 

between outbreaks of valley fever and climatic conditions 

(Maddy 1957; Hugenholtz 1957; Maddy 1958). The fungus is 

sensitive to climate variability, and responds to changes 

in moisture and temperature. This paper is a review of 

previous research that has discussed the relationship 

between valley fever and climate. Introductory information 

on C. immltis and valley fever is followed by an overview 
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of the existing state of knowledge regarding climate and 

the disease. I conclude with recommendations for future 

research that will lead to an improved understanding of the 

relationship between climate and valley fever. 

The majority of previous studies were conducted 

several decades ago, and focused mainly on the distribution 

of C. immitis and an understanding of the different phases 

of the lifecycle, and other aspects of the disease. In 

most cases, only a passing reference is made to the role of 

climate in the fungus' lifecycle and subsequent outbreaks 

of valley fever. A few studies outlined the climatic 

characteristics of the study area or attempted to create 

conditions similar to the external environment in a 

laboratory, but little has been done quantitatively shows 

the presence or absence of, a specific relationship between 

climatic conditions and incidence of valley fever. 

2.1.1 Lifecycle of Coccidioides Immitis 

A brief summary of the lifecycle of the fungus is useful 

for understanding the link between clim.ate conditions and 

valley fever. C. immitis is considered to be a dimorphic 

fungus, given that its lifecycle consists of two different 

phases (Fiese et al. 1955) (Fig. 2.2) . In the soil, C. 



21 

Enteroarthric 
Development 

Endospore Release 

Arthroconidial 
Secession 

Saprophytic Phase 
Arthroconidial 
Growth Phase 

Endosporulation 

Spherule y 
Segmentation Ij 

Spherule Differentiation 

Parasitic Phase 

Fig. 2.2. C. immltis exists in both saprophytic (left) and 
parasitic (right) phases. 



22 

immitls exists in the saprophytic phase. Microscopic 

fungal spores called arthroconidia grow into long hyphae 

(strands), in which brittle, sterile cells separate pieces 

of the viable fungus. With moisture, the hyphae grow into 

large mats within the soil. When the soil dries, cells in 

hyphae encyst and form individual spores. Some portions of 

the live fungus remain in the soil continuing the 

saprophytic phase, while other spores become airborne. 

Once a host breathes in a spore, the parasitic phase of C. 

immitis begins. Spherules within the lung reproduce by 

filling with endospores. Once filled, the spherule bursts 

and endospores are released into the tissue. Each 

individual endospore develops into a spherule and repeats 

the process of filling with endospores. In this manner, 

the fungus is able to reproduce rapidly in the tissue, 

until the hosfs immune system suppresses the fungus or the 

host eventually dies. 

2.1.2 Effect on Populations 

Valley fever cannot be spread from person to person, 

and once a person has been infected with valley fever they 

gain, in most cases, lifelong immunity to the disease 

(Pappagianis 1988). Infections are most likely during dry. 
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dusty periods, when arthrospores from the fungus become 

airborne and can be inhaled (Rutherford 1996). The majority 

of the people infected (60%) either presents no symptoms, 

or experience mild, cold-like conditions (Smith et al. 

1946b). Some may endure a variety of flu-like symptoms 

that usually appear after an incubation period of one to 

three weeks (Smith 194 6; Stevens 1995). Of those infected 

by C. immltis, about one percent experience a disseminated 

form of the disease when the spherules enter the 

bloodstream and spread beyond the lungs (Einstein 1992). 

Disseminated valley fever can express itself with a wide 

variety of conditions. Lesions may occur on organs outside 

of the pulmonary system, as well as on the skin; bones and 

joints may be damaged (Fiese 1958). The most severe form 

of the disseminated disease is coccidioidal meningitis, the 

mortality of which is essentially one hundred per cent when 

produced by valley fever (Fiese 1958). 

Certain age groups and ethnic backgrounds are more 

vulnerable to valley fever. Although people of any age are 

susceptible to valley fever, the very young and the very 

old often experience the worst cases (Einstein 1992). 

Studies show people under the age of five and over the age 

of fifty who acquire valley fever are more likely to 
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experience disseminated cases (Pappagianis 1988). These 

groups appear to be more vulnerable to the disease, as 

their immune systems are less resilient and less able to 

resist infection. Pappagianis (1988) reports a 

"disproportionate representation of certain ethnic groups 

among the cases of disseminated" valley fever. Studies 

have shown that blacks, Asians, Mexicans, Filipinos, and 

Native Americans are more likely to experience a severe 

form of valley fever than whites. While there may be a 

genetic tendency for different ethnic groups to experience 

differences in severity, it is possible that in the past 

people of non-European descent lived or worked in 

environments in which exposure to the fungus was more 

likely. Adult white females are less likely to have the 

disseminated disease than adult white males (Pappagianis 

1988) . 

Occupation is also a factor in the occurrence of 

valley fever. Those working outside, including 

construction and agricultural workers, are more likely to 

be exposed to the fungus (Johnson 1981) . Archaeologists 

also are frequently exposed to the fungus when conducting 

research in endemic regions (Werner and Pappagianis 1973). 
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Although most people infected with valley fever do not 

need to seek medical care, treatment of serious cases can 

be costly, both directly through medical care and 

indirectly, through lost worker-hours. On average, valley 

fever treatment in the United States costs $9 million 

annually, and results in almost a million person-days of 

labor (Pappagianis 1980). A 1977 outbreak in California 

cost approximately $2 million (Pappagianis 198 0). Another 

outbreak in California, which lasted from 1991 to 1994, 

cost an estimated $66 million in treatment, 

hospitalization, and lost wages (Jinadu 1995). 

2.2 Literature Review 

2.2.1 Background Information on Climate and C. immitis 

There is documented evidence relating outbreaks of 

valley fever and climatic conditions. C. immitis is 

sensitive to climate variability, and responds to changes 

in moisture and temperature. Growing concern over climate 

variability and change, and its impact on human health, has 

led to national research initiatives to examine possible 

implications. Valley fever is an emerging, infectious 

disease that could be highly influenced by climate 
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variability and change^ thus an improved understanding of 

its relationship to climate conditions is important. 

Previous studies ha.ve suggested a relationship between 

the incidence of valley fever and climatic conditions. 

Temperature, precipitation, humidity, wind, and the 

occurrence of dust stoirms have been shown to affect either 

the growth of C. immi-iils and/or the distribution of the 

arthrospores. 

Maddy (1965) has determined that endemic areas share 

certain climatic characteristics that appear to be most 

favorable to the growth, of C. immitis. The average mid 

winter temperature is usually greater than 2 degrees 

Celsius, the average mid summer temperature is usually 

greater than 27 degrees Celsius, and the average annual 

rainfall is usually between 127 and 508 millimeters (lyiaddy 

1965) . These values vary slightly by report, but in general 

they characterize the highly endemic regions of the United 

States. The same characteristics are also indicative of 

much of the Lower Sonoxan Life Zone, the distribution of 

which is very similar to that of the endemic region (Maddy 

1957) . 
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2.2.2 Precipitation and Coccldloides Immltls 

The role of precipitation in the lifecycle of C. 

Immltls is two-fold: the fungus requires moisture to 

complete its lifecycle, and the presence of m.oisture in the 

soil decreases the amount of dust and airborne arthrospores 

(Pappagianis 1980) . C. Immltls requires a sufficient 

amount of water, but if conditions are too moist, 

competitors may prevail (Reed 1960). After rains, the 

fungus grows rapidly until the soil dries or until 

competitors stifle its growth (Maddy 1964; Reed 1960). 

After the soil dries, wind or another disturbance, such as 

digging or construction, break apart the hyphal chains. 

The arthrospores may then be dispersed and cause infections 

if they are inhaled. 

The total amount of rainfall appears less important 

than precipitation effectiveness (Maddy 1964). 

Precipitation effectiveness, a measure of soil moisture 

persistence, can be determined by examining factors such as 

runoff, evaporation, temperature, and vapor pressure, as 

well as the soil type (Maddy 1964) . C. Immltls requires 

moist soils for growth, but for winds to distribute the 

fungus, the soil must dry out at some point during the 

year. 
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Very low rainfall, as well as annual rainfall in 

excess of 500 mm, decreases the prevalence of C. immitis in 

the soil (Reed 1960) . The Mohave and Sonoran Deserts of 

California receive approximately 7 6 mm of rain annually, 

too dry for C. immitis (iyiaddy 1958). Coincidentally, 

increased rainfall at the eastern limits of the endemic 

zone in Texas enables competitive species to thrive (Maddy 

1958) . 

2.2.2.1 Seasonality of Precipitation 

Previous studies have reported from soil samples 

collected in California the times of the year when moisture 

conditions appear most favorable for the growth of the 

fungus. In their analysis of soil samples from the 

southwestern San Joaquin Valley, Egeberg and Ely (1956) 

discovered a seasonal variation of the distribution of C. 

immitis in its saprophytic phase. More samples tested 

positive for C. immitis at the end of the wet season than 

at the end of the dry period. Moreover, all positives 

collected at the end of the wet season were removed from 

surface soil. No positives were detected below the 

surface. In another study, the fungus was not recovered 

from any of the samples collected in August and December, 
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during and at the end of the dry season in California 

(Elconin 1957). Further studies in California found that 

the peak time period for recovering C. immltis from the 

soil was approximately six weeks following the last rain 

(Elconin 1964). Figure 2.3 illustrates the relationship 

between precipitation and valley fever incidence in the 

southern San Joaquin Valley in California. California 

receives the majority of its precipitation during winter, 

and has a single peak in incidence in late fall and early 

winter following the summer dry season. Pima County, 

Arizona, on the other hand, experiences a bimodal 

precipitation pattern, and therefore the annual cycle of 

valley fever incidence is more complex than that of 

California (Fig. 2.4). A small peak in incidence is 

experienced in early summer following a dry spring, while 

the highest annual incidence is experienced in November and 

December following the summer monsoon and dry autumn. 

Maddy (1965) conducted a similar study in south central 

Arizona, and found that the majority of the C. immitis-

positive samples were collected between September and 

December following the summer rainy period. This study 

shows that C. immltis is most often recovered from the soil 
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Fig. 2.3. California's pattern of precipitation and valley-
fever incidence. (Source: National Climatic Data Center 
and Arizona Department of Health Services) 
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Fig. 2.4. Arizona's bimodal precipitation pattern, and 
corresponding pattern of valley fever incidence. (Source: 
National Climatic Data Center and California Department of 
Health Services) 
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in the time period following the rainy season, and more 

rarely during the hot, dry season. 

2.2.2.2 Variability of Precipitation 

Researchers examining the variability of valley fever 

incidence have often also noted the variability in climatic 

conditions. A study of valley fever incidence at four Army 

air fields in the San Joaquin Valley by Smith and coworkers 

(1946a) showed a relationship between precipitation and 

incidence. The highest number of cases occurred during the 

dry summer and fall, while the lowest number occurred 

during winter and spring. An increase in incidence was 

found to follow a particularly wet winter. The study 

showed also that the effect of rainfall was reflected in 

the month in which it occurred as well as the following 

month. 

Maddy (1965) noted the majority of human infections 

seem to occur during the windy, dusty period following the 

wet season. Although the majority of California's rainfall 

occurs in winter, it has been noted that summer rains in 

California, coupled with high temperatures, seem to reduce 

the incidence of the disease during the following fall and 

winter (Jinadu 1995) . It has also been shown that heavy 
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rains in February and March are followed by an increased 

number of cases in the fall (Stevens 1995). 

A study by Hugenholtz (1957) concerned the 

relationship between the incidence of valley fever and 

several climatic variables in Arizona, namely temperature, 

rainfall, and dust storms. An examination of hospital 

admissions records at Williams Air Force Base in Maricopa 

County from 1952 to 1956, for example, showed two annual 

peaks in valley fever incidence, one in July and a second 

in October or November (Hugenholtz 1957). Months with 

highest incidence coincided with months having the lowest 

rainfall. Hugenholtz employed quantitative techniques in 

the study, correlating temperature, dust storm incidence, 

or total rainfall, with valley fever incidence. The study 

did not find a strong relationship between rainfall and 

incidence, but found stronger relationships with 

temperature and dust storms. Based on the findings however, 

Hugenholtz (1957) concluded that it is possible to predict 

lower infection rates during a season if the preceding wet 

period was drier than normal (Hugenholtz 1957). For 

example, infection rates should be lower in the spring and 

summer following a relatively dry winter, and a drier than 

usual July and August should be followed by fewer 
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infections in fall (Hugenholtz 1957). Hugenholtz coramented 

that his "remarks have been largely theoretical and based 

on an incomplete study, but they may serve to stimulate 

studies by other investigators." 

In the early 1990s, California experienced an epidemic 

of valley fever that was linked to variability in 

precipitation. Jinadu (1995) reported that the epidemic 

followed five years of drought in California. This review 

of the epidemic was based on a descriptive analysis of the 

rainfall conditions leading up to and during the outbreak. 

February and March of 1991 through 1994 had approximately 

double the normal amount of rainfall, and Jinadu (1995) 

commented that these "intense rains caused an abundant 

growth" of the fungus in the soil. After drying, the soil 

was disturbed by winds, and C. immitis spores were released 

into the air causing a much greater number of cases than 

normal, particularly in Kern County, California. 

2.2.3 Temperature and Coccidioides inmltis 

Soil sterilization is thought to be very important in 

the lifecycle of C. immitis. During prolonged periods of 

hot, dry conditions, the surface of the soil is partially 

sterilized and many competitors are removed, but C. immitis 
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arthrospores remain viable below the surface (Maddy 1965; 

Reed 1960) . When rain fallS;. conditions in the surface 

soil eventually approach the ideal for the growth of the 

fungus. It returns to the surface layer, which contains 

few competing organisms (Maddy 1957). 

2.2.3.1 Seasonality of Temperature 

Several studies examined the conditions in which C. 

immitis survives in its natural environment. Plunkett and 

Swatek (1957) conducted a study to isolate the fungus from 

the soil in an area in California where archaeology 

students were infected, and examine the seasonality of the 

fungus (Plunkett 1957). C. immitis was recovered during 

every month from a depth of 100 mm below the surface, but 

was not found on the surface during August, October, and 

November (Plunkett 1957). Data for September were not 

listed. Soil temperatures 25 mm below the surface were 

recorded, and the high temperature at that depth was found 

to be 60.5 °C (Plunkett 1957). Temperatures between 49 °C 

and 54.4 °C were often recorded during the time of the study 

(Plunkett 1957). It was noted that moisture was not 

evident in the soil at the 100-150 mm level during August, 
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September, and October (Plunkett 1957). C. immitis was 

able to survive at this depth in spite of the dry-

conditions, but was not able to survive on the surface at 

this time of year, possibly due to the high surface soil 

temperatures. 

Maddy (1965) conducted a similar study in Arizona. 

Over a two-year period, the majority of C. immitis-positive 

samples were collected between September and December 

(Maddy 1965). Temperatures at a depth of 12.7 mm below the 

surface often ranged from 60-70 °C for almost 100 days 

during the summer (Maddy 1965). Maddy commented that 

"surface soil temperatures were too high in the early 

summer to be favorable for the growth of many 

microorganisms." 

2.2.3.2 Variability of Temperature 

Research has been conducted within the laboratory to 

determine the hardiness of C. immitis. Overall, the study 

showed the adaptation of arthrospores to a wide variety of 

conditions. Friedman et. al. (1956) studied the survival 

characteristics of one strain of C. immitis at different 

temperatures and different relative humidities within the 



37 

laboratory, finding arthrospores were able to survive for 

six months under a wide variety of conditions (-15 °C to 37 

°C, and a wide range of relative humidities) . The only 

situation unfavorable to the spores was the combination of 

high temperature (37 °C) and low relative humidity (10%) 

(Friedman 1956). Six months elapsed at these conditions, 

however, before all of the spores died, thus the fungus is 

able to survive for short periods in extreme conditions. 

This particular combination of temperature and relative 

humidity is characteristic of the endemic region in 

general, but both temperature and relative humidity change 

on a diurnal and seasonal basis. 

2.2.4 Dust Storms 

The arthrospores are distributed easily by wind, 

linking dust storms to outbreaks of valley fever. Two 

epidemics in particular have been the result of dust 

storms. In December of 1977, a dust storm that blew 

through Kern County, California carried dust and C. immltis 

spores to the north and west sparking an epidemic in which 

the number of cases in the six months following the storm 

exceeded the annual number of cases in any year in 
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California up to that time (Pappagianis 1978). Rainfall 

several days after the dust storm prevented the epidemic 

from being any worse (Pappagianis 197 8). An outbreak of 

valley fever following the Northridge earthquake was the 

result of dust clouds that were generated from landslides 

during and after the quake (Schneider 1997). A study of 

the occurrence found that those who reported being 

physically within a dust cloud were three times more likely 

to be diagnosed with valley fever than those that were not 

as obviously exposed to dust and arthrospores (Schneider 

1997) . 

Prior research has addressed dust control and at the 

same time, the control of outbreaks of valley fever. In 

the 1940s, four Army air fields in the San Joaquin Valley 

experimented with dust control by spreading refined oil on 

athletic fields (Smith 1946a). Other methods of dust 

control included paving roads and vegetating lawns and 

fields (Smith 1946a). A combination of these methods 

produced a one half to two thirds decrease in infection 

rates by reducing the amount of dust and C. imiaitis 

arthrospores distributed by wind and disturbed by activity 

(Smith 194 6a). 
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2.2.5 Non-Climatic Environmental Factors 

Other environmental factors in addition to climate 

conditions affect the growth of C. Immitis and valley fever 

incidence. Elconin et al. (1964) has indicated that a 

deposition of salts near the surface of the soil creates 

favorable conditions for the growth of C. immitis. 

Increased surface soil salinity can work in conjunction 

with high surface temperatures to partially sterilize the 

soil, killing competing microorganisms while allowing C. 

immitis to survive (Egeberg and Ely 1956; Elconin et al. 

1964) . 

Another important factor related to the growth of the 

fungus is the relationship with other organisms in the 

soil. C. immitis can often be isolated near or within 

pack-rat burrows (Lacy and Swatek 1974). This environment 

provides organic material for the fungus to consume. 

Finally, human activity that disturbs the soil can 

facilitate the dispersal of the fungus. Farming, 

construction activity, and archaeological surveys have been 

associated with increased incidence of valley fever 

(Pappagianis 1988). 
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2.3 Conclusion and Future Research 

Little research examining the role of climate 

variability in the occurrence of valley fever has been 

performed since the 1950s and 1960s. Of the studies during 

that period, only a few compared climate and incidence 

data. In particular, the study by Hugenholtz (1957) looked 

for a correlation between such information, but analyzed 

only fourteen years of data for a specific area. Although 

there is a general understanding of the climatic 

characteristics of the endemic region, the specific 

conditions that may result in an outbreak of valley fever 

are not well understood. 

Although the data are in some ways problematic (given 

different reporting techniques and a varying incubation 

period), long records of valley fever incidence are 

available. A quantitative analysis of incidence data in 

conjunction with climate data, such as temperature, 

precipitation, wind speed, and relative humidity is 

recommended. Analysis of multivariate climate data and 

valley fever incidence data can then be used to develop 

models of C. immitis' response to climate. A predictive 

model will be particularly useful to health care providers 

and government health services. 
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Chapter 3 - Relationships Between Climate and Valley Fever 
in Pima County, AZ, 1948-1998 

3.1 Introduction 

3.1.1 Background 

Coccidioidomycosis, commonly known as valley fever or 

cocci, is a disease endemic to the western hemisphere. It 

is found in limited regions in the United States, as well 

as areas in Central and South America, and is caused by 

Coccidioides immitis (C. immitis), a soil-dwelling fungus 

that is sensitive to climate conditions. The most highly 

endemic regions within the United States (Fig. 3.1) include 

Kern County in the San Joaquin Valley of California (hence 

the name Valley Fever) and Pima, Pinal, and Maricopa 

counties of Arizona (Maddy 1965). 

Infections first occur in the lung, when the fungus 

becomes airborne, and is inhaled by a host. Both humans 

and other mammals, such as dogs and cattle, are susceptible 

to the disease. The majority of the people infected (about 

60%) either presents no symptoms, or experience mild, cold

like conditions (Smith et al. 194 6b) . Some may endure a 

variety of flu-like symptoms, including fever, coughing, 

and chest pain, which usually appear after an incubation 
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period of one to three weeks (Smith et; al. 1945b; Stevens 

1995) . Of those infected by C. immltis, about one percent 

experience a disseminated form of thie disease when the 

fungal spores enter the bloodstream amd spread beyond the 

lungs (Einstein 1992) . Disseminated valley fever can 

express itself with a wide variety of cronditions, including 

joint damage, skin lesions, and potentially fatal 

meningitis. 

Certain age groups and ethnic backgrounds are more 

vulnerable to valley fever. Although p»eople of any age are 

susceptible to valley fever, the very young and the very 

old often experience the worst casess (Einstein 1992). 

Studies show cases of valley fever in people under the age 

of five and over the age of fifty are more likely to 

experience disseminated cases (Pappagi anis 1988). These 

groups appear to be more vulnerable to the disease, as 

their immune systems are less resiliemt and less able to 

resist infection. Pappagianis (1988) reports a 

"disproportionate representation of cezrtain ethnic groups 

among the cases of disseminated" valley fever. Studies 

have shown that blacks, Asians, Mexics-ns, Filipinos, and 

Native Americans are more likely to experience a severe 

form of valley fever than whites. Whiile there may be a 
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genetic tendency for different ethnic groups to experience 

differences in severity, it is possible that in the past 

people of non-European descent lived or worked in 

environments in which exposure to the fungus was more 

likely. Adult white females are less likely to have the 

disseminated disease than adult white males (Pappagianis 

1988) . 

Occupation is also a factor in the occurrence of 

valley fever. Those working outside, including 

construction and agricultural workers, are more likely to 

be exposed to the fungus (Johnson 1981) . Archaeologists 

also are frequently exposed to the fungus when conducting 

research in endemic regions (Werner and Pappagianis 1973). 

3.1.2 Lifecycle of C. immitis 

A brief summary of the lifecycle of the fungus is 

useful for understanding the link between climate 

conditions and valley fever. C. immitis is considered to 

be a dimorphic fungus, meaning that its lifecycle consists 

of two different phases (Fiese et al. 1955) (Fig. 3.2). In 

the soil, C. imm^itis exists in the saprophytic phase. 

Microscopic fungal spores called arthroconidia grow into 

long hyphae (strands), in which brittle, sterile cells 
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parasitic (right) phases. (Adapted from Fiese 1958.) 
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separate pieces of the viable fungus. With moisture, the 

hyphae grow into large mats within the soil. When the soil 

dries, cells in hyphae encyst and form individual spores. 

Some portions of the live fungus remain in the soil, while 

other spores become airborne. Once a host inhales a spore, 

the parasitic phase of C. immltis begins. Spherules within 

the lung reproduce by filling with endospores. Once 

filled, the spherule bursts and endospores are released 

into the tissue. Each individual endospore develops into a 

spherule and repeats the process of filling with 

endospores. In this manner, the fungus is able to 

reproduce rapidly in the tissue, until the host's immune 

system suppresses the fungus or the host eventually dies. 

3.1.3 Climate Relationships 

It is generally understood that, given C. immitis'' 

response to moisture within the soil, a relationship exists 

between climate conditions and valley fever incidence 

(Hugenholtz 1957; Maddy 1957; Maddy 1958; Kolivras et al. 

2001) . However, little research examining the role of 

climate variability in the occurrence of valley fever has 

been performed since the 1950s and 1960s. Most studies 

anecdotally mention the presence of a link between climate 



A1 

and incidence, but they did not quantitatively examine that 

relationship. Kolivras et al. (2001) reviewed the existing 

literature, and found that of the studies during that 

period, only a few compared climate and incidence data. In 

particular, the study by Hugenholtz (1957) looked for a 

correlation between such information, but only fourteen 

years of incidence data were available at that time. 

Previous studies have shown that precipitation and 

temperature are important in the lifecycle of C. immltis 

(Hugenholtz 1957; Maddy 1957; Maddy 1958; Kolivras et al. 

2001) . The role of precipitation in the lifecycle of C. 

immitis is two-fold: the fungus requires moisture to 

complete its lifecycle, but a period of dry conditions 

enables the fungus to become airborne (Pappagianis 198 0) . 

C. immitis requires a sufficient amount of water, but if 

conditions are too moist, competitors within the soil may 

prevail (Reed 1960). After rains, the fungus grows rapidly 

until the soil dries or until competitors stifle its growth 

(Maddy 1964; Reed 1960) . After the soil dries, wind or 

another disturbance, such as digging or construction, 

liberate the fungal spores, which may then be dispersed and 

cause infections if they are inhaled. C. immitis, like all 

fungi, requires the presence of moisture to complete its 
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lifecycle. However, in order for the fungus to become 

airborne and cause infections, the soil must dry at some 

point during the year. Therefore, it is hypothesized, that 

a cycle of wet and dry conditions is necessary for 

outbreaks of the disease to occur. 

Temperature also plays a vital role in the growth of 

C. immitis through surface soil sterilization. It is 

hypothesized that during prolonged periods of hot, dry 

conditions, the surface of the soil is partially sterilized 

and many competitors are removed, but C. immitis spores 

remain viable below the surface (Maddy 1955; Reed 1960). 

When rain falls, conditions in the surface soil eventually 

approach the ideal for the growth of the fungus. It is 

thought that C. immitis then returns to the surface layer, 

which contains few competing organisms, and grows fairly 

rapidly in this more ideal environment (Maddy 1957). A 

subsequent dry period then allows the fungus to become 

airborne, and infections to occur. Although there is a 

general understanding of the climatic characteristics of 

the endemic region, and the conditions that are conducive 

to fungal growth, the specific conditions that may result 

in an outbreak of valley fever are not well understood. 
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3.1.4 Climatic Characteristics of Study Area 

Presumably^, the climate conditions in the endemic area 

represent those most favorable for the growth of C. 

imiaitis. Because of data availability, this study focuses 

on Pima County, which is located in south central Arizona 

in the Sonoran Desert. Characteristic of much of the 

endemic area, Pima County receives low annual precipitation 

on an annual basis (approximately 12 inches in Tucson), 

which is coupled with a wide range in diurnal and seasonal 

temperatures (Fig. 3.3). The region is characterized by a 

bimodal precipitation pattern, in which rainfall is 

received during the winter and summer, and is otherwise 

fairly dry. Winter precipitation is received mainly as a 

result of frontal systems that enter the southern portion 

of the United States, and is characterized by soaking rains 

that last several days. Following the northward retreat of 

frontal systems in spring is a dry foresummer period in 

which insolation and temperatures are high due to a lack of 

cloud cover. Summer precipitation occurs as a result of 

the North American monsoon, and is characterized by intense 

thunderstorms with high spatial and temporal variability in 

precipitation. Monsoon circulation is usually in place 

around the beginning of July, and typically lasts through 
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Fig. 3.3. Average precipitation and temperature, Tucson, 
Arizona. 
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mid-September. Following the end of the monsoon pattern, a 

relatively dry period is in place until the beginning of 

winter precipitation. These average patterns show large 

variability from year to year, and are affected in part by 

climate fluctuations such as the El Nino-Southern 

Oscillation. 

The climate of Pima County is therefore conducive to 

high valley fever incidence when considered within the 

framework of the fungus' response to climate conditions. 

Hot, dry conditions during the spring and fall provide a 

setting during which competing organisms may not be able to 

survive in the soil. Soil moisture increases during the 

winter and summer periods of increased rainfall, enabling 

the fungus to grow within the soil, perhaps relatively free 

of competition. Finally, the soil dries again, permitting 

fungal spores to become airborne and infections to occur. 

Other environmental factors in Pima County, including soil 

type and salinity, also provide an environment favorable to 

the growth of the fungus. However, this study focuses on 

the association between climate conditions and incidence. 
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3.1.5 Overall Aims of Study 

The broad aims of this research are twofold. The 

first goal is to improve our understanding of the basic 

relationships between climate and valley fever through 

exploratory data analysis. This portion consisted of 

bivariate correlation analyses as well as a compositing 

analysis of antecedent climate conditions. Using the 

understanding of climate and valley fever gained through 

the exploratory data analysis, our second goal was to 

develop monthly multivariate models to predict valley fever 

incidence based on current or forecast climate conditions. 

3.2 Data 

3.2.1 Valley Fever Data 

This study focuses on Pima County, AZ, which has one 

of the highest rates of valley fever in the world, and is 

experiencing a rapid growth of susceptible populations 

(Galgiani 1999) . The long data record was also an 

important factor in choosing Pima County data for the 

analysis. Maricopa County is also endemic to valley fever, 

however, incidence data were not readily available at the 

time this study began. Although valley fever incidence is 
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also high in Kern County, California, the existing 

available monthly incidence data record (198 9-1998) is not 

long enough for the analysis conducted in this study. 

Monthly valley fever incidence data, by month of estimated 

disease onset, for Pima County for 1948-1998 were obtained 

from the Arizona Department of Health Services (ADHS). 

Ideally for this study, we would analyze the 

relationship between valley fever and climate using actual 

fungal count data from the soil or air rather than 

incidence data. Unfortunately, fungal count data are 

currently unavailable for several reasons: The fungus is 

very difficult to isolate in the soil, and the culturing 

process requires special laboratory biosafety facilities 

and is very time-intensive. As a result, there are no time-

series of spore data amenable to climatic analysis. 

Instead, we use incidence data, which are several steps 

removed from the effect of climate (Fig. 3.4) . When 

climate conditions are right for the fungus to grow in high 

numbers in the soil and the soil then dries out, spores may 

be dislodged and become airborne. Following an airborne 

dispersal of C. immitis spores in which a host becomes 

infected, symptoms will appear after an incubation period 

of 14-21 days (Smith 1946b; Stevens 1995). If conditions 
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become severe, the infected person will visit a doctor. 

The physician then reports the estimated date on disease 

onset to ADHS. Also, the fungus is not evenly distributed 

across the endemic region. Rather, its distribution is 

spotty across the landscape; the fungus may be present in 

one area but not found just a short distance away (meters 

or tens of meters). Therefore, although climate conditions 

impact growth and dispersal of the fungus directly, 

incidence was used as a substitute of the fungus' response 

to climate. 

There are concerns about the quality of the incidence 

data, and several points apparent in Figure 3.5 require 

attention. As shown by the graph, there are no available 

data for 1973-197 9, decreasing the fifty-one year data 

record to forty-four years. Perhaps the major problem in 

the data record is the lack of a consistent reporting 

standard over time. The method of reporting cases of 

valley fever to the ADHS by doctors has changed many times 

over the past fifty years. Overreporting may explain the 

very high number of cases during the late 1950s and 1960s, 

but other interannual variability may still be dominated by 

reporting changes. The data from 1980-1998 are considered 

to be more trustworthy than the entire data record since 
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annual variation is less extreme during that time. Also, 

in the mid-1990s, reporting techniques were standardized. 

In addition, the number of susceptible people has changed 

over this time period, and soil disturbance due to 

development has varied as well. Both factors play a role 

in the unevenness of the time series. Our intent in this 

study is to identify the climatic component of variability 

over time, and the methodology for doing so is outlined in 

section 3 below. 

3.2.2 Climate Data 

Monthly climate data for southeastern Arizona (Climate 

Division 7) were obtained from the National Climatic Data 

Center (NCDC) . In addition to temperature and 

precipitation, we used Palmer Drought Severity Index (PDSI) 

as a proxy for soil moisture since an appropriate measure 

for Pima County was not available for 1948-1998. The 

balance between wet and dry conditions in the soil is 

likely to affect the growth and distribution of C. immitisr 

and therefore PDSI was deemed a useful variable to include 

in the study. One caveat with the use of PDSI is that 

temporal autocorrelation is intrinsic to the index. The 

smoothing that is used to create the value means that the 
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index does not change rapidly with changes in soil moisture 

conditions. Rather, the index changes slowly given 

temperature and precipitation patterns over a time period 

of several months. Also, the index was developed for 

semiarid and dry sub-humid climates, and its application in 

other climate regimes, including desert regions, may lead 

to erroneous results (Guttman 1991). For these reasons, 

PDSI was used for exploratory analysis, and not included in 

model development. Other climate data were acguired for an 

individual station, Tucson International Airport, from 

NCDC. Since 98% of Pima County's population resides in the 

Tucson metropolitan area (http://www.census.gov), it was 

acceptable to apply Tucson station climate data to 

countywide valley fever data. The station data included 

average daily maximum, minimum, and dew point temperatures 

and average daily wind speed. These daily data were 

averaged to produce monthly data to compare to the monthly 

incidence data. 

3.3 Methodology 

A quantitative analysis of incidence data in 

conjunction with climate data, including temperature, 

precipitation, and wind speed was performed. To understand 

http://www.census.gov
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the basic relationships between valley fever and climate, 

and to determine the most appropriate climate variables to 

include in the multivariate predictive model, an 

exploratory data analysis was performed in two steps. 

Initially, a bivariate comparison of climate variables and 

incidence was performed. Then, the climate conditions 

leading up to a month with particularly high or low 

incidence were examined through a compositing analysis. 

The results of the exploratory portion of the study guided 

the development of multivariate regression models to 

predict monthly incidence using antecedent climate 

conditions . 

This portion of the study was conducted to understand 

the scale of action of C. Immitis. The fungus exists at 

very fine spatial scales, however the climate data was 

acquired for a broad spatial scale, at the level of climate 

division. Incidence data was available at the county 

level. This spatial mismatch could be resolved by linking 

the spatially limited, but temporally refined climate model 

with a spatial model in order to develop a more complete 

predictive model. 
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3.3.1 Exploratory Data Analysis 

3.3.1.1 Bivariate Analyses 

The monthly climate variables included in the 

bivariate analyses were total precipitation, average, 

minimum, and maximum temperatures, dew point temperature, 

average wind speed, and the Palmer Drought Severity Index. 

For this analysis, valley fever incidence data from 198 0-

1998, standardized by Pima County population, were used. 

As previously mentioned, these data are considered to be 

more reliable than the entire long-term record. 

The analyses were performed using lags of one through 

twelve months in order to determine the timing of the 

climate variable's influence on incidence. Temperature and 

precipitation impact the fungus as it grows in the soil, 

and ultimately then influence the dispersal of the fungus. 

The lags accounted for a delay in the impact of climatic 

conditions on the growth and dispersal of C. immitis. 

Incidence in a particular month was compared to each of the 

climate variables in the preceding months, up to a period 

of one year. The relationship was examined visually with 

scatterplots, and by calculation of correlation 

coefficients between variable pairs. Those climate 
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variables and time lags that significantly influenced 

incidence were identified as potential input variables in 

the multivariate model. 

3.3.1.2 Composite Analysis 

In order to use the entire record of incidence data 

(1948-1998), the raw case counts were transformed to 

account for the changes in reporting methods over the time 

period. Incidence in each month was expressed as a 

percentage of the respective year's annual total (e.g., 

January 1983 as a percentage of total incidence in 1983). 

During any one particular year, it is likely that the same 

reporting standards were used, and the month-to-month 

variability is fairly accurate, even if the raw data is 

inconsistent over the time span of several years. The 

deviation from the mean monthly percentage of the annual 

total was then calculated for each month (e.g., January 

198 3 percentage above or below average percentage for all 

Januarys). The ten highest and lowest of these deviations 

were identified for each month. Deviations from mean 

climate conditions were calculated for the forty-eight 

months preceding months with high and low incidence. 

Composites of average deviation for the climate variables 
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were constructed for months with a high and low percentage 

of annual incidence. As a result of these transformations, 

above or below antecedent climate conditions were compared 

to similarly above or below normal valley fever incidence, 

all values normalized by month. 

3.3.1.3 Modeling Overview 

To improve understanding of multivariate relationships 

between climate variables and incidence, and to provide the 

potential for forecasting disease outbreaks, multiple 

linear regression models were developed for each month. 

Candidate input variables were selected from the results of 

the exploratory data analyses, and screened using principal 

components analysis (PCA) to avoid collinearity. For each 

month, anomalous years were excluded from model development 

to ensure a normal distribution of incidence data. One 

anomalous year was excluded for six different months; 

anomalous years were not present in the other months, and 

therefore no years were excluded in the model development 

for those particular months. The models were designed to 

predict deviation from mean incidence, and were cross-

validated on independent data. 
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3.4 Results and Discussion 

3.4.1 Bivariate Analyses 

As previously mentioned, this portion of the study was 

conducted using incidence data per 100,000 people for 1980-

1998. The long-term record (1948-1998) is highly varied, 

and the quality of the data is less certain than more 

recent data. 

3.4.1.1 Precipitation 

The bivariate analysis shows that precipitation in 

October negatively influences valley fever incidence in 

both short term and long term time periods. A one-month 

lag as well as seven- through eleven-month lags show a 

higher correlation than other lag periods (Fig. 3.6). In 

other words, precipitation in October is negatively 

associated with incidence in November as well as the 

following May through September. Rainfall during this time 

period likely moistens the soil and the fungus does nor 

become airborne easily. Precipitation in other months also 

influences incidence, but the relationship is not as 

apparent nor as consistent as that of October. 

Precipitation may be important on time scales longer than 



Pima County Precipitation vs. Incidence 

0-12 month lags 

indicates negative relationship and significant R 

Fig. 3.6. Summer and early fall precipitation is negatively correlated 

with incidence in Pima County at varying lags. 
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one year. This long-term relationship is explored using 

composite analyses. 

3.4.1.2 Air Temperature 

Average air temperatures in July and August are 

positively associated with incidence in Pima County in the 

seven months that follow (Fig. 3.7). September 

temperatures are positively associated with incidence 

mainly only in shorter time periods, during the October and 

November that follow. Incidence in other months appears to 

be affected much less by average temperature. Minimum air 

temperature in July and August is positively associated 

with incidence in the months that follow, particularly 

early fall and winter. Higher than normal minimum 

temperatures during the summer likely correspond to 

increased humidity related to the monsoon circulation. 

Maximum temperatures in July, August, and September appear 

to positively affect incidence in the short term, in the 

one or two months that follow. Higher than normal maximum 

temperatures in summer may lead to below normal soil 

moisture provided by monsoon storms, thereby allowing the 

fungus to become airborne and infections to occur in the 

next few months. Shorter term wet and dry cycles, on the 



Pima County Temperature vs, Incidence 

0-12 month lags 

indicates negative relationship and 
significant 

Fig. 3.7. Temperatures in summer and early fall are negatively correlated with 
valley fever incidence. 
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order of days or weeks, may more heavily impact fungal 

growth than monthly cycles, however without fungal counts 

from the soil or air, this relationship is very difficult 

to examine. This finding also fits well with previous 

research that associates high temperatures with soil 

sterilization. Given the results of our correlation 

analysis, it appears that extreme summer temperatures in 

particular are important. Higher than normal summer 

temperatures may selectively kill other microorganisms in 

the soil, and when moisture returns to the soil C. immitis 

may be able to reproduce relatively free of competition 

leading to increased incidence in the months that follow 

(Maddy 1957). Whatever the mechanism, higher than normal 

summer temperatures lead to higher than normal incidence in 

the future. 

3.4,1.3 Dew Point Temperature 

Average dew point temperature in the first seven 

months of the year are significantly associated with 

incidence in only one or two months with few clear, 

consistent patterns. It was expected that dew point 

temperature, as an .indicator of moisture content in the 

air, would affect the ability of the fungus to become 
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airborne; high moisture content in the air would translate 

to somewhat moist top soil. However, the few possibly 

spurious high correlations did not indicate an association 

between dew point temperature and incidence. 

3.4.1.4 Wind Speed 

Daily wind speed data were averaged by month to match 

the monthly incidence data. At this temporal scale, a 

relationship between wind speed and incidence is not 

significant. It is more likely that individual, daily wind 

events, such as very high gusts, affect incidence rates of 

valley fever. Gust data and maximum sustained wind speed 

were not analyzed in this study, however they would be an 

important part of future analyses. 

3.4.1.5 Palmer Drought Severity Index 

The PDSI value has a lagged negative influence on 

incidence in every month in which there is an apparent 

relationship. PDSI in the latter half of the year has a 

much stronger influence on incidence in the months that 

follow than in the early part of the year. The PDSI value 

in September is correlated with incidence in the remainder 

of fall, winter, and the next spring. October PDSI is 
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correlated with incidence in the months that follow, 

through the end of summer. The PDSI value in November is 

associated with incidence in January and May, as well as 

the following fall. In the short term, PDSI is likely 

negatively correlated with incidence because soil moisture 

prevents the fungus from becoming airborne. Conversely, if 

PDSI values are near zero or negative, the soil is likely 

to be dry and more infections may occur. 

3.4.2 Composite Relationships 

3.4.2.1 PDSI Composite 

PDSI does not fluctuate rapidly, but rather is 

smoothed over time. This is apparent in most composites, 

in that PDSI does not fluctuate greatly over the four-year 

time period. The autocorrelation inherent to the index 

creates smoothly changing values rather than high 

fluctuations around the mean. Most monthly composites 

indicate that a month with high (low) incidence is preceded 

by drier (wetter) than average conditions, as indicated by 

PDSI. During some months, such as November (Fig. 3.8), 

PDSI values fall below the mean for the entire forty-eight 

month composite. Other months, including January (Fig. 
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Fig. 3.8, PDSI values fluctuate very little prior to November with either 

high or a low percentage of total annual incidence. 
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3.9), show PDSI values that fluctuate around the mean. A 

marked dry period is found about six months prior to a 

month with higher than average incidence. This dry period 

may allow the fungus to break apart within the soil and 

more easily be dispersed. The June through September time 

period with above average incidence is preceded by above 

average PDSI values for almost the entire forty-eight month 

composite. This pattern was not expected, but perhaps 

indicates that the fungus responds to shorter timescales 

than PDSI, which is highly smoothed over time. 

April, May, and October with a high percentage of 

annual incidence show an interesting moisture pattern that 

fits well with past findings. In the composite graph for 

all three months (Fig. 3.10), above average moisture 

conditions are apparent about two to three years prior to a 

month with high incidence, according to PDSI values. 

During this time of above average moisture, the number of 

fungal spores was likely increasing within the soil. A 

drying trend occurs following that time period, during 

which the fungus can break apart and become airborne. A 

reverse pattern exists during some months with a low 

percentage of annual incidence. Two to three years prior 
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Fig. 3.10. PDSI composites for April (A), May (B), and 
October (C) with a high percentage of total annual 
incidence show a similar pattern of moist and dry 
conditions. 



74 

to a month with a low percentage of annual incidence, 

conditions appear to be drier than average. Low moisture 

diminishes fungal growth, and therefore during dry periods, 

the fungus may survive in the soil without producing 

arthroconidia. A trend of increased moisture follows, 

which may prevent the fungal spores that survived from 

becoming airborne. 

3.4.2.2 Precipitation Composite 

The composite graphs for precipitation show patterns 

similar to PDSI. Months with a high (low) percentage of 

annual incidence are often immediately preceded by lower 

(higher) than average precipitation. During the summer, 

(June through September) , months with a high (low) 

percentage of total annual incidence are characterized by 

higher (lower) than average precipitation for much of the 

previous twelve through thirty-six months. Although 

deviation from mean precipitation is highly varied prior to 

a month with a high percentage of monthly incidence, in 

most graphs a pattern appears twenty-four months prior that 

indicates above average precipitation. This again points 

to the need for moisture to allow the fungus to grow 

abundantly. 



75 

The January graph (Fig. 3.11) provides an example of 

the complexity of the composite analysis for precipitation. 

Some expected patterns are visible. Two years prior to a 

January with a high percentage of total annual incidence, 

above average precipitation is received, while a drying 

trend is present in the months immediately prior to the 

high January. 

3.4.2.3 Temperature Composite 

The temperature composite graphs are also highly 

varied, but some patterns are apparent. Months with a high 

percentage of total annual incidence are often preceded by 

higher than average temperatures. This factor is likely 

related to soil moisture, as well as the soil sterilization 

hypothesis involving summer temperatures. High 

temperatures increase evaporation, leaving the soil dry and 

the fungus able to become airborne. Some months with a low-

percentage of total annual incidence are preceded by lower 

than average temperatures, however the pattern is not as 

consistent as that of high incidence months. Approximately 

two years prior to a month with high incidence, the 

composite graphs for some months show below average 

temperatures. This decrease in temperature coincides with 
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Fig. 3.11. The precipitation composite leading up to a January with high and 1 
percentage of total annual incidence is complex and highly varied. 
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the period of increased precipitation that allows the 

fungus to grow in higher than average numbers. 

The composite graph for January (Fig. 3.12) with a 

high percentage of total incidence illustrates the above 

points. Temperatures in October are above average, and 

along with below average precipitation, soil moisture 

conditions likely allow fungal spores to become airborne 

more easily. November and December approximately two years 

prior to a January with high incidence experience below 

average temperatures and receive above average 

precipitation. These conditions in the soil m.ay foster an 

environment conducive to the growth of the fungus. 

Therefore, more fungal spores may be available when 

conditions are right for the fungus to become airborne, 

resulting in higher than normal incidence. 

3.4.3 Model Development and Variables 

Variables shown to be useful in predicting valley 

fever from the exploratory data analysis were included in 

the model development. The monthly models were designed to 

predict deviation from mean percent of the total annual 

incidence, using deviation from mean climate conditions for 

varying time periods as variables. It was determined that 
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given uncertainties about the quality of the incidence 

data, it would be difficult to accurately predict the 

precise number of cases. Rather, the models were designed 

to predict monthly incidence as relatively above or below 

average (as defined in the methodology section). The 

entire data record, 1948-1998 (1973-1979 unavailable), was 

used in the model development. 

Potential variables included temperature and 

precipitation for a time period of up to four years prior 

to the month being predicted. PDSI variables were not 

included in the model development. PDSI values are not 

forecast into the future, and since the goal of modeling in 

part is to use forecast climate conditions, PDSI was deemed 

to be less useful to actual model development. The 

variables included in model development also incorporated a 

number of interaction terms that were developed for each 

month. Precipitation and temperature for important time 

periods were multiplied to allow for complex relationships. 

Eleven to fourteen variables for each month were 

selected for model development. Some of those variables 

were highly correlated with one another (e.g., interaction 

term of temperature and precipitation, and the 

precipitation variable for the same time period), therefore 
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a principal components analysis was conducted for each 

month in order to avoid multicollinearity and increase 

parsimony. The original variables were reduced to five to 

eight components. The highest loading variable in each 

component, as well as those variables that were not highly 

loading in any component but were logical to include, were 

entered into the modeling procedure. 

The monthly models were initially developed on all 

data using a backward stepwise regression procedure to 

reduce the variables to those that were statistically 

significant. The relatively small number of years (n=4 4) 

for model building made standard cross-validation 

technigues, in which a subset of the data are set aside for 

testing, difficult to use. Therefore, a jack-knife (leave-

one-out) cross-validation technigue was employed. After a 

monthly model was developed on all data using the backward 

stepwise procedure, the selected variables were forced into 

individual non-stepwise models in which data for one year 

was left out. This process was repeated so that each year 

was left out of the process one time. Each instance of the 

model then attempted to predict the year that was left. 

This resulted in n=44 independent data points. 
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The variables chosen for each model are outlined in 

Table 3.1, along v/ith the t-statistics and significance for 

each variable. Most of the variables selected by the 

modeling procedure are from time periods of one year or 

greater from the month being predicted. It appears that 

short-term climate conditions are not as important in 

predicting incidence as long-term conditions. This is 

partly counter-intuitive, but may be a result of shorter-

term processes being filtered out in the many steps between 

fungal growth and severe disease incidence. About 40% of 

the variables chosen are either winter temperature or 

winter precipitation of varying time periods. It therefore 

appears that conditions during winter have more of an 

effect on incidence during any month than conditions during 

other seasons, and are therefore more useful in prediction. 

Winter precipitation is more consistent than summer 

thunderstorms, and is characterized by soaking rains rather 

than intense storms, and perhaps moisture that soaks into 

the ground is more important to C. immitis' lifecycle than 

summer rainfall that often flows over the surface without 

soaking into the soil. Data for winter precipitation 

appear to be more reliable for use in the models. Winter 

temperatures may indicate that the fungus is not able to 
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Table 3.1. Variables and coefficients for each monthly 
model. 

Coefficients t-stats Significance 

January 

(Constant) -0.787 -1.868 0.070 

D-Jan 1 Yr P -0.428 -2.093 0.043 

O 1 YT 0.374 2.102 0.042 

Decl YT -0.415 -2.069 0.045 

Apr-Jun 1.5 YT -0.176 -2.227 0.032 

February 

(Constant) 3.13 38.19 0.00 

S-Jan trend P 0.13 2.47 0.02 

N-D 2 Y T 0.05 2.10 0.04 

March 

(Constant) 5.87 4.71 0.00 

N-D 1 Y P -1.09 -2.96 0.01 

F-Mar 2 Y P 1.86 5.47 0.00 

Aug-Nov P -0.56 -3.48 0.00 

D-Mar 1 Y trend P 1.13 2.80 0.01 

O-Jan 2.5 Y P -0.35 -2.22 0.03 

Jan 2 Y T 0.50 2.91 0.01 

F-Mar 2 Y P-Mar-Jun 2 Y T -0.03 -4.95 0.00 

April 

(Constant) 3.093 35.111 0.000 

D-Mar2 YP -0.112 -2.932 0.006 

S-Jan 2.5 Y trend P 0.165 2.420 0.020 

Nov 2.5 Y T -0.137 -3.512 0.001 

D-Mar 3.5 Y T -0.032 -2.098 0.042 

May 

(Constant) 3.112 37.431 0.000 

Feb-Apr P -0.177 -2.691 0.010 

Aug-Dec .5 P -0.072 -2.222 0.032 

Nov-Jan 1.5 YT 0.041 1.972 0.056 

Sep-Oct 1.5 T -0.053 -1.912 0.063 

June 

(Constant) 10.3084 114.30 0.00 

Sep-Dec .5 Y P 0.0330 3.83 0.00 

Apr-Aug 3 Y trend P 0.0677 3.60 0.00 

Sep-Dec .5 Y P-Jul-Oct .5 Y T -0.0008 -3.43 0.00 



Table 3.1. (cont.) Variables and coefficients for each 
monthly model. 

Coefficients t-stats Significance 

July 

(Constant) 3.862 1.909 0.064 

Jul-Dec 2 Y P 0.631 4.009 0.000 

Nov-Mar1.5 YT 0.200 3.001 0.005 

Apr 3.5 YT -0.364 -2.170 0.037 

Nov-Mar .5 Y P 0.357 2.029 0.050 

Jun P*Jun T -0.044 -2.242 0.031 

DEC .5 T 0.383 1.770 0.085 

August 

(Constant) -5.599 -2.747 0.009 

JANP 0.877 1.759 0.087 

Sep 1 Y P 1.598 3.020 0.005 

JULT 0.812 2.178 0.036 

Jul-Sep 1 YT -0.548 -4.254 0.000 

Oct-Jan 1.5 YT 0.188 1.784 0.083 

Apr 2.5 Y P*Apr-Jun 2.5 Y T 0.027 2.806 0.008 

September 

(Constant) 2.969 108.799 0.000 

Jul-Nov 1 Y T -0.015 -2.827 0.007 

Dec-Feb .5 Y P 0.032 2.630 0.012 

Aug-Oct 3 Y P 0.029 2.016 0.051 

October 

(Constant) 98.70 16.70 0.00 

May-Sep T 6.13 5.27 0.00 

Mar-May 2.5 Y P -24.80 -4.17 0.00 

Mar-May .5 Y P -11.99 -2.11 0.04 

November 

(Constant) -12.393 -2.753 0.009 

SepP*Sep-OctT 0.031 2.706 0.010 

Feb-Jun 2.5 Y T 0.229 2.444 0.019 

Jun-Sep 3.5 trend T -0.671 -2.857 0.007 

Jan 1.5 YT -0.781 -2.963 0.005 

•ecember 

(Constant) 2.174 26.613 0.000 

May 1.5 YT -0.114 -3.338 0.002 

Dec 1 Y T 0.105 2.724 0.010 

JULT -0.151 -2.447 0.019 
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survive at temperatures below a certain threshold. Given 

the improved ability to forecast winter clim.ate in the 

Southwest, the models should be better able to forecast 

incidence than if more summer climate variables were 

included. It was expected that the interaction terms would 

be useful predictors given the importance of soil moisture, 

however only four were chosen during the regression 

procedure. 

3.4.3.1 Model Evaluation 

The models were evaluated using the independent data 

set aside as part of the jack-knifing process when the 

models were developed. The coefficient of determination 

(explained variance) ranges from low to moderate values 

(Fig. 3.13). In all cases, the F-statistic associated with 

the model was significant (a=0.05). The best model results 

in terms of explained variance were found in models for 

months that have the highest percentage of total annual 

incidence, as indicated in Figure 3.13. Fortunately, we 

are better able to predict incidence in the months that are 

of the highest concern. Root mean squared error (RMSE) was 

calculated for each model (Table 3.2), and ranges from 27% 
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Table 3.2. ElMSE percentages of average deviation from mean 
incidence are moderate for months with a high percentage of 
annual incidence. 

Model (Adj. R^) Independent R^ RMSE % 

.257 (.207) 

.396 (.334) 

.443 (.401) 

.417 (.323) 

msm 
.490 (.451) 

.385 (.339) 

Apr 

• 
Jnn 

I Aug 

Oct 

Dec 

.34 

.21 

34 

42 
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to 50% of the average deviation from percent of total 

annual incidence in the observed data. Although ElMSE 

values are high, those months with the highest percentage 

of total annual incidence have lower RMSE values than 

months with low percentage. The models are able to predict 

independent points fairly well, however they fail to 

capture extremes in m.any cases. Figure 3.14 illustrates 

the ability for the November model to predict observed 

values. 

Residuals were examined in an attempt to explain the 

portion of the variance unaccounted for by the model 

variables. No clear consistent pattern is apparent in the 

residuals that can be explained by a variable that was not 

included. However, it is likely that a portion of the 

unexplained variance in incidence is due to climatic events 

that occur on a smaller time scale. Individual wind and 

dust events occurring on a daily or weekly basis affect 

incidence, however they are not captured in the model due 

to the use of monthly climate data. Also, soil moisture is 

likely an important factor in the lifecycle and dispersal 

of C. immitis, and although PDSI was used as a proxy for 

soil moisture, a more exact measure of soil moisture would 

improve the model. Finally, the models could be improved 
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through the incorporation of spatial variables including 

soil type, disturbance regime, and proximity to riparian 

zone. 

3.5 Summary and Conclusions 

The first portion of this study consisted of an 

exploratory data analysis that sought to understand the 

basic relationships between climate conditions and 

incidence. The bivariate and composite analyses provided 

insight into the conditions up to four years prior to a 

month with high or low incidence. This process also aided 

in the selection of variables for inclusion in the 

development of the multivariate model. Predictive models 

were developed using a backward stepwise regression, and 

incorporated temperature and precipitation variables at 

varying time periods prior to the month being predicted. 

The resulting models included variables that were mainly 

from time periods of greater than one year prior to the 

month being predicted. Also, winter climate conditions 

appear to be important incidence predictors, as winter 

temperature and precipitation variables frequently appear 

in the models. Months with the highest percentage of total 

annual incidence have the best performing models, according 
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to and E^^ISE. Therefore^ we are best able to predict 

incidence in the months that experience the greatest number 

of cases. 

Several hypotheses of the research were supported by 

our findings, while evidence was not apparent for other 

premises. The hypothesis regarding soil moisture 

conditions was supported by the results of the composite 

analysis. Moisture is required to the fungus to grow in 

large amounts within the soil, but a dry period is required 

for airborne dispersal. This pattern was found in the 

composite graphs for months experiencing above average 

incidence. Also, the soil sterilization hypothesis was 

supported by findings in the bivariate analysis. The 

positive relationship between incidence and summer 

temperatures indicates that high temperatures may lead to a 

high number of cases. During the study, other interesting 

relationships were found that had not previously been 

documented. These may be real, or may be related to the 

nature of the data and analyses. They are statistically 

significant, however, and should be investigated further. 

The importance of winter precipitation and temperature 

variables in the models that were developed point to the 

winter season as having more of an impact on incidence than 
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other seasons. This result was unexpected given previous 

studies and the exploratory analysis. In future studies, 

more attention should be given to the role of winter 

climate in predicting incidence. 

Valley fever incidence is increasing within the 

endemic zone in Arizona as the general population grows, as 

well as in the population of susceptible groups. Previous 

research links valley fever incidence with climate 

conditions. This study adds to that literature by 

improving the understanding of this complex relationship, 

and by developing a predictive model. We are working with 

state health officials as well as researchers within the 

Valley Fever Center for Excellence to implement the monthly 

models as a guide to the likelihood of above or below 

average incidence in future months. Pima County is 

currently experiencing an upward trend in cases, and model 

results can be integrated in an attempt to partially 

explain this increase. Given past, current or forecast 

temperature and precipitation conditions, the user can 

determine if incidence will be high in future months. The 

information can be passed along to health care providers 

who can prepare for increased cases by ensuring that the 

proper treatment is available. Also, doctors in other 
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regions may recommend that susceptible people not travel to 

or through the endemic zone if conditions are right for 

increased cases. Model runs using forecast climate 

conditions are sensitive to the quality of those forecasts, 

which must be considered by the user. Improved, better 

informed models could be created if fungal count data 

become available in the future. Also, an analysis of wind 

gust data and a measure of soil moisture would be very 

useful to further understand the relationship between 

climate conditions and valley fever incidence. 
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Chapter 4 - Conclusions 

Climate and valley fever research fits into a larger 

climate and health agenda that seeks to understand the 

impacts of climate variability and change. The 

relationships between climate and valley fever incidence 

revealed in this project add to the overall understanding 

of the disease, and could be expanded to explore the 

impacts of climate change on incidence rates and the range 

of the disease. The study borrows from traditions in 

medical geography that aim to understand relationships 

between disease;, society, and the environment, and seek; to 

promote adaptation to a disease. The analyses and 

predictive models from this study have improved 

understanding of the disease, and have provided an 

opportunity for society to respond to potential increases 

in incidence. 

The research was conducted at the intersection of a 

university-wide, interdisciplinary group examining valley 

fever and an assemblage of scientists studying the impacts 

of climate variability. Researchers associated with the 

Valley Fever Center for Excellence are studying a wide 

variety of aspects dealing with the disease, including 

isolation of C. Immitis in the soil, the analysis of canine 
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incidence data, and a range of medical studies including 

the developm.ent of a vaccine. The results of this study-

will add to the overall development of knowledge by 

providing an improved understanding of climate 

relationships. Since a vaccine is unlikely to be developed 

for five to ten years, the predictive models from this 

study will be useful for raising awareness among health 

care providers, state health officials, and the general 

public as to the likelihood of high incidence. The study 

was also based within and supported by the Climate 

Assessment of the Southwest Project that aims to understand 

the impacts of climate variability upon humans. Human 

health is an important part of climate variability 

research, and the model developed in this study can be used 

in concert with climate forecast models and fine-scale 

spatial climate data developed by others in this research 

group. 

Populations particularly susceptible to the 

disseminated form of the disease are growing in number in 

Pima County. The area is popular for elderly winter 

residents, and the number of people with suppressed immune 

systems is also increasing within the county. Tourism 

attracts people from other regions and countries that have 
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not previously been exposed to the disease, and who may 

return home infected with the fungus and become ill. 

Therefore, a national and international awareness of the 

disease is important. The monthly multivariate models will 

provide some insight into the level of incidence in future 

months, and a warning system can be implemented in which 

the user, possibly at the Valley Fever Center for 

Excellence (VFCE), inputs climate data into the model and 

distributes the results that could be useful to doctors. 

The VFCE website would be a useful location for posting 

forecast information. The implementation of a model is not 

without its caveats however. Tourism and in-migration may 

be negatively affected if a prediction of particularly high 

incidence is made. The model should be applied with 

caution, however its usefulness in preventing serious cases 

of valley fever should not be overlooked. 

In limiting the study to examining the relationship 

between incidence and climate conditions, and the 

development of a predictive model, certain aspects 

regarding valley fever were not addressed. Environmental 

factors work in unison with social factors to cause the 

disease. For example, construction activity could 

potentially aid spores in becoming airborne and the annual 
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cycle of migration of winter residents could both affect 

the incidence time series. Factors such as the 

aforementioned were not included in order to isolate the 

effects of climate. Qualitative analyses that may look at 

the particular individuals becoming sick or the access to 

health care for those infected were also not addressed in 

this study. The research concentrated on environmental 

factors, but future work could expand to include social 

issues related to valley fever incidence. 

Much research remains in analyzing detailed aspects of 

valley fever incidence. With data available in the future 

that provides counts of C. immltis spores in the soil, the 

relationships between climate and incidence uncovered in 

this study could be improved and clarified. The models 

developed in this research predict deviation above or below 

the mean. With count data, a more precise prediction of 

incidence could be made. Also, future research could 

address social aspects of the disease, including analyses 

of at-risk groups and access to treatment. 



APPENDIX: GLOSSARY OF TERMS 

Arthroconidia - a spore released through the fragmentation 

of hyphae 

Dimorphic - a species that has two distinct forms 

Endospore - thick-walled, dehydrated structures that can 

resist extreme dryness and very high temperatures for 

long periods of time 

Hyphae - long, thread-like strands of fungal cells, forming 

filamentous tubes 

Myceliiom - an interconnected mass of hyphal strands 

Saprophyte - an organism that feeds on dead or decaying 

vegetable or animal material 

Spherule - the form taken by the fungus within tissue 

during the parasitic phase of its lifecycle; 

multicellular structure 
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