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A B S T R A C T

Water managers are increasingly interested in better understanding and planning for projected resource impacts
from climate change. In this management-guided study, we use a very large suite of synthetic climate scenarios
in a statistical modeling framework to simultaneously evaluate how (1) average temperature and precipitation
changes, (2) initial basin conditions, and (3) temporal characteristics of the input climate data influence water-
year flow in the Upper Colorado River. The results here suggest that existing studies may underestimate the
degree of uncertainty in future streamflow, particularly under moderate temperature and precipitation changes.
However, we also find that the relative severity of future flow projections within a given climate scenario can be
estimated with simple metrics that characterize the input climate data and basin conditions. These results
suggest that simple testing, like the analyses presented in this paper, may be helpful in understanding differences
between existing studies or in identifying specific conditions for physically based mechanistic modeling. Both
options could reduce overall cost and improve the efficiency of conducting climate change impacts studies.

Practical Implications

The results here suggest that both initial conditions within the
basin and differences in the timing and duration of wet, dry,
warm, or cool periods in the driving climate data are im-
portant sources of uncertainty in streamflow simulations that
should be considered in evaluating projections of future flows.
These results also underscore the importance of using multiple
approaches to evaluate the impacts of climate changes. Top-
down study designs, where climate model data is selected,
downscaled and used to drive an impacts model, provide va-
luable information, but they have the potential to integrate
multiple influences on streamflow because model-derived
climate scenarios may differ in many ways (e.g., mean change,
seasonality of change, temporal characteristics of the data,
spatial pattern of change), and initial basin conditions are not
always well characterized because of the need for model spin-
up. Different studies use different years of climate data to
initialize hydrological models, leading to slightly different
initial conditions. The approach used here is capable of

deconstructing the influence of initial basin conditions, mean
climate change, and differences in the pattern and timing of
climate change in a way that a top-down study cannot.
Moreover, the methods used in this study, which make it easy
to evaluate the effects of mean climate changes and initial
conditions, provide a framework for evaluating and prior-
itizing more intensive hydrological modeling efforts. A syn-
thetic scenario strategy like the one used here facilitates using
a bottom-up research approach that allows for a more com-
prehensive assessment of the types and ranges of hydrological
and climatic conditions that can impact future flows.

1. Introduction

1.1. Colorado River flow projections

The Colorado River provides water for most of the major me-
tropolitan areas and agricultural producing regions in the southwestern
U.S., with the Upper Colorado River Basin generating the vast majority
of the flow (about 90% according to Christensen et al., 2004) (UCRB,
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Fig. 1). Proxy-based streamflow reconstructions have documented long
duration low-flow periods in the distant past (e.g., Meko et al., 2007;
Gangopadhyay et al., 2015) that would have significantly impacted
municipal, industrial, and economic activities in the region. Projections
for warmer and possibly drier conditions in the coming century (IPCC,
2013; Ayers et al., 2016; Udall and Overpeck, 2017) have raised con-
cern about future flows in the basin, and the fate of Colorado River has
been the focus of numerous streamflow projection studies. These have
ranged from statistical estimates of flow, such as Hoerling and
Eischeid’s (2007) estimates based on projected values of the Palmer
Drought Severity Index, to complex studies that use downscaled pro-
jections of future temperature and precipitation with a range of hy-
drological models (Vano et al., 2014).

Results have ranged from predictions of minimal storage in Lake
Mead by 2021 (Barnett and Pierce, 2008), to more modest decreases in
flow (Christensen et al., 2004; Cook et al., 2004; Milly et al., 2005;
Christensen and Lettenmaier, 2007; Hoerling and Eischeid, 2007;
McCabe and Wolock, 2007; Seager et al., 2007; Gao et al., 2011;
Rasmussen et al., 2011; USBR, 2011a, b; Gao et al., 2012; Seager et al.,
2013; Udall and Overpeck, 2017), to projections of little to no change
(Harding et al., 2012), with the potential for increases in flow volumes
when more recent climate projections are used (Ayers et al., 2016).

1.2. Sources of uncertainty in flow projections

The diversity of flow projections has been largely attributed to the
choice of climate scenarios (Harding et al., 2012; Vano et al., 2014),
downscaling methods (Vano et al., 2014; Mendoza et al., 2016), and
hydrological model parameters (Vano et al., 2014; Mizukami et al.,
2016). Other potential sources of uncertainty in flow projections have
also been assessed in other contexts. For example, forecast models are

regularly run using the best estimate of initial basin conditions (i.e., soil
moisture, snowpack or groundwater storage) or with ranges of initial
basin conditions to provide better seasonal projections (Harpold et al.,
2016; Franz et al., 2003). Starting longer term climate projection-based
hydrological simulations under different climatic regimes (i.e., wet or
dry and hot or cold periods) can also result in different outcomes
(Koczot et al., 2011), yet it is not always clear how comparable initial
basin conditions are, given the need for hydrological model spin-up (see
Vano et al., 2012; Mizukami et al., 2016 for two initialization strate-
gies).

In addition, the timing and duration of wet/dry/cool/warm periods
in input climate data can vary substantially. Clark et al. (2016) suggest
that this is an important source of uncertainty to consider (see their
Fig.1). Within climate models, climatic persistence can derive from
initial atmospheric or oceanic conditions and/or from unforced varia-
bility within the model itself, and these two sources of uncertainty are
not entirely independent (Hawkins et al., 2016; Deser et al., 2014).
Over multi-decadal periods, internal variability can influence the di-
rection of trends (Deser et al., 2012a), and at regional scales, internal
variability contributes to projection uncertainty for up to a century
(Hawkins and Sutton, 2009). Moreover, many climate models do not
skillfully simulate all of the processes that influence multi-annual to
multi-decadal variability (Ault et al., 2012, 2014; Deser et al., 2012b),
adding a further layer of complication.

1.3. Addressing water manager concerns

Thus, despite the large and growing suite of studies evaluating
changes in Colorado River flow, planning for the impacts of climate
change on the UCRB is still a significant challenge for water resource
managers (Clark et al., 2016). Identifying a way to assess the potential

Fig. 1. Map of the Upper Colorado River Basin. The location
of the Lees Ferry gauge is indicated.
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impacts of climate change that is meaningful, useful, and relevant to
resource management requires interaction between scientists and water
management practitioners (Wall et al., 2017). Collaboration between
scientists, engineers, and policy-makers often requires the exploration
of new approaches to provide appropriate answers to questions re-
garding future water resources.

Over the course of a recent workshop focused on discussing the
influence of temperature on streamflow in the Colorado River, water
managers in the UCRB identified key questions and concerns, ranging
from the scientific to the practical. Some of the questions included (1)
whether similar climate scenarios can produce substantially different
flow characteristics, (2) whether fairly distinct future climate changes
can produce similar flow, (3) what characteristics of the input data can
drive flow diversity, given similar input climate data, (4) how tem-
perature changes can influence future flows, and (5) how efficient
preliminary studies can be used to inform more intensive hydrological
modeling efforts. Water managers also identified two specific time-
scales of drought that had significance for resource management, 4-year
periods of intense drought and 7-year periods of moderate drought
conditions

Moreover, managers at this meeting expressed interest in a study
taking a “bottom-up” approach wherein researchers attempt to identify
the range of climate conditions that could produce hydrologic condi-
tions of concern in contrast to the usual “top-down” method where a set
of climate projections are downscaled and then used to run a hydro-
logical model (Wilby and Dessai, 2010). One underappreciated weak-
ness of a top-down approach is that sources of uncertainty may be
bundled in ways that are difficult to disentangle. For example, in the
ensemble members served on the National Climate Change Viewer
(https://www2.usgs.gov/climate_landuse/clu_rd/nccv.asp; Alder and
Hostetler, 2013; Hostetler and Alder, 2016), MIROC-ESM projects
8.0 °C warming in mean annual maximum temperature over the UCRB
between 1981–2000 and 2075–2099, with the rate of warming in-
creasing throughout the 21st century. In contrast, GFDL-CM3, which
warms slightly less (7.3 °C), simulates a greater rate of warming during
the middle of the 21st century than later. FIO-ESM projects the least
warming overall (3 °C by 2075–2099), but, like MIROC-ESM, warms at
a greater rate later in the 21st century than earlier (USGS, 2017; Alder
and Hostetler, 2013; Hostetler and Alder, 2016). In this example, dif-
ferences in the magnitude and temporal pattern of warming are con-
flated, but there can also be difficulties disentangling the magnitude
and seasonality of climate change or in separating the magnitude of
change from its spatial pattern. Performing bottom-up analysis in a way
that can unravel the influence of these differences can require running
large ensembles of climate scenarios, something that may be compu-
tationally expensive and time-consuming using standard hydrological
modeling experiments.

1.4. Statistical flow models

Here we demonstrate a way of responding to water manager con-
cerns regarding possible future Colorado River flow using synthetic
climate time series in a statistical modeling framework. Recent work by
Woodhouse et al. (2016) suggests that statistical relationships based on
basin-average climate can be used to estimate water-year flow with
reasonable skill. Although this simple statistical model cannot account
for changes in basin ecohydrologic characteristics that can impact flow
(e.g., rain-snow partitioning (Knowles et al., 2006; Harder and
Pomeroy, 2014), precipitation rate (Dunne et al., 1991), dust-loading
(Painter et al., 2010), vegetation change (Bosch and Hewlett, 1982),
soil moisture status (Harpold et al., 2016), spatial patterns in tem-
perature (Woodhouse et al., 2016), or in precipitation distribution
(Patil et al., 2014)), it does provide a way to disaggregate the con-
tributions of initial basin conditions, changes in mean climate, and the
natural variability of climate to changes in flow. Thus, it provides a first
order analysis of the potential range of hydro-climatic effects of climate

change in the Colorado River basin in a way that water managers felt
would be useful.

A statistical approach in no way replaces more physically based
models, but it does allow us to transparently, rapidly, and economically
simulate a very large ensemble of future water-year flow projections
under a large number of unique combinations of climate change for
different initial basin conditions. It provides a resource for simulta-
neously investigating the roles that climate changes, initial basin con-
ditions, and internal climate variability could play in introducing un-
certainty to Colorado River flow projections. More importantly, it meets
manager needs in three important ways. First, this type of large en-
semble approach allows managers to estimate the range of water-year
flows that are possible under a given climate change scenario and
model. Second, it provides information on climate data characteristics
other than mean change (i.e., variability, sequencing, and persistence)
that can induce low or high flows. With this information, water man-
agers can evaluate simple metrics describing the input climate data to
understand whether projections made with a more traditional “top-
down” approach are likely optimistic or conservative. Finally, this ef-
ficient and cost-effective analysis offers water managers an opportunity
to prioritize climate scenarios that produce concerning flow results, or
particularly wide ranges of future flow conditions, for analysis with
more costly and time-consuming mechanistic modeling studies similar
to the way in which the assessment by Vano et al. (2015) allows
managers to assess changes in flow expected for mean changes in cli-
mate. While efficiency is not always the end-goal of scientific inquiry,
time and cost savings are certainly valuable in management contexts.

2. Methods

2.1. Data

Monthly average temperature and monthly total precipitation from
the Precipitation-elevation Regression on Independent Slopes Model
(PRISM) 4-km data set (Daly et al., 2008, http:www.ocs.orst.edu/
prism/) were averaged over the UCRB for each year from 1906
through 2014. Basin-average monthly temperature was then averaged
over the period May through July (sumT), and basin-average monthly
precipitation was summed over the months October through April
(winP) and May through September (sumP), informed, in part, by the
findings of Woodhouse et al. (2016) and described in detail below.
While there is concern about the potential for biases in PRISM tem-
peratures, particularly at higher elevations (Oyler et al., 2015a),
McCabe et al. (2017) found minimal differences between average
monthly temperature estimates from PRISM and TopoWx (Oyler et al.,
2015b) over the UCRB. Naturalized flow estimates for the water-year
Colorado River flow at Lees Ferry from 1906 to 2014 were provided by
the U.S. Bureau of Reclamation (https://www.usbr.gov/lc/region/
g4000/NaturalFlow/index.html).

2.2. Statistical flow model

Woodhouse et al. (2016) found a reliable statistical relationship
between UCRB naturalized water-year flow and observed basin-average
winP, melt-season (March–July) temperature, and fall (November) soil
moisture, which was derived from the McCabe and Wolock (2011)
water balance model. Here we develop and test a slight modification of
the Woodhouse et al. (2016) model, using sumP in place of fall soil
moisture to reduce the number of necessary modeling steps.

We built regression models using all combinations of current and
previous year climate variables and previous water-year flow (no in-
teractions) over the period 1941–1990 and then compared them on the
basis of Akaike Information Criteria (AICc), Bayesian Information
Criteria (BIC), autocorrelation in the residuals, and their ability to
predict observations over two validation periods (1906–1940 and
1991–2014). The top 25 models are shown in Table 1. There were
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relatively minimal differences in BIC, AICc, and correlation with nat-
uralized flow in the validation periods for all of the top 25 models,
suggesting that there are many reasonable ways to statistically model
flow in the UCRB. Table 1 demonstrates that all models fit using data
from the middle of the 20th century under-predict flow during the first
validation period. Models that do not include temperature tend to
overestimate flow during the second validation period. This, in com-
bination with water manager desires to evaluate the effects of projected
temperature on future UCRB flow and the growing body of evidence
suggesting that temperature already is adversely affecting UCRB flow
(Udall and Overpeck, 2017; Woodhouse et al., 2016) led us to favor
models that include temperature.

Given the plethora of reasonable models to choose from, we chose
to use model 11 (bolded in Table 1), which used all current year climate
and previous water-year flow as predictors. We chose this model be-
cause it (1) is well supported with good statistical fits over test and
validation periods, (2) is parsimonious and thus relatively easy to in-
terpret, and (3) has limited autocorrelation in the residual time series,
suggesting that low-frequency variability in the flow is being ade-
quately reproduced. While several models incorporating lagged climate
variables had lower AICc and BIC values than model 11, we felt that
lagged flow was a more straightforward proxy for basin conditions, as it
is unclear how prior year climate can impact flow without mediating
basin conditions. We also chose to re-generate the model for the full
period of record analyzed (i.e., 1906–2014) to get a more robust tem-
perature coefficient. The final model is outlined in Table 2.

2.3. Construction of synthetic climate series

Anomaly series (time series of departures from the respective long-
term means) were synthetically generated for winP, sumP, and sumT.
The synthetic series were 109 years in length and were made by re-
sampling the measured series in blocks of 10–15 years (with replace-
ment). Blocked resampling was chosen in an attempt to preserve ob-
served sequences of high- and low-flow years, allowing for better
representation of year-to-year and decade-to-decade patterns of serial
correlation and persistence (Rajagopalan and Lall, 1999; Hirsch et al.,
2015). The process was repeated 500 times to produce 500, 109-year
long anomaly series for each variable. The means of the resampled time
series were checked, and they varied by up to about 15mm for winP
(6.5% of the observed mean precipitation), 5 mm for sumP (3.2% of the
mean) and 0.4 °C for sumT. To resolve the variability in means, we then
normalized each resampled anomaly time series to its mean. The final,
normalized anomalies all had means within 3×10−15 of 0. The ob-
served mean values were added back to the anomaly traces to produce
synthetic climate traces for each variable. To account for projected
changes in climate (i.e., temperature and precipitation) the means of
the synthetic time series were adjusted to include warming (+0 °C,
+1 °C, +2 °C, +3 °C, +4 °C) and changes in seasonal precipitation
totals (80%, 90%, 100%, 110%, and 120% of observed seasonal

precipitation), providing 125 unique combinations of changes in tem-
perature and precipitation (e.g., +2 °C sumT, 80% sumP, 110% winP)
with 500 replicates each (Table 3). This range of precipitation and
temperature changes encompasses most of the CMIP5 projections for
the UCRB as outlined in Vano et al. (2015).

2.4. Construction of synthetic flow series

The flow model (Table 2) was used with all 125 combinations of
climate series (Table 3) as inputs using three sets of initial flow values
representing initiation basin conditions. The three sets of initial flow
values included (1) dry or low flow conditions (25th percentile of ob-
served flow during 1906–2014), (2) moderate flow (50th percentile of
observed flow), and (3) wet or high flow conditions (75th percentile of
observed flow). A minimum water-year flow value of 0.5 million acre-
feet, close to the lowest annual values reconstructed by Woodhouse
et al. (2006), was imposed to resolve the potential for zero or even
negative flow values being produced by the model. This analytical
format provided 375 unique scenarios, with 500 replicates each,
leading to a full ensemble of 187,500 future flow trajectories.

2.5. Analysis of synthetic flow

We calculated average flow over the full record, as well as during
the beginning (years 1–30), middle (years 40–69), and end (years
80–109) of the period. This allowed us to evaluate the duration of
impacts from initial basin conditions, as well as the impact of climate
variability.

While changes in the average flow are of concern, effects of climate
change on temporal flow patterns and the persistence of low and high
flow periods are also important for water management in the UCRB.
Low flow period definitions were identified through discussion with
water managers about their concerns regarding impacts of changes in
future UCRB flow on water management operations. To address con-
cerns regarding low flow periods, we investigated the number of per-
iods when UCRB flow was below the 1906–2014 average for seven
years with no more than one year above average (henceforth “low-flow
periods” or LFPs) and the number of periods when flow was less than
75% of the 1906–2014 average for four years with no more than one
year above average (henceforth “very-low-flow periods” or VLFPs). The
frequency of LFPs was evaluated by investigating all possible runs of
seven years (years 1–7, 2–8, etc.) and tallying the number of seven-year
periods during which flow did not exceed the 1906–2014 average in
more than one year. The frequency of VLFPs was evaluated by in-
vestigating all possible runs of four years and tallying the number
during which flow did not exceed 75% of the 1906–2014 average flow
in more than one year. Using periods of defined length (seven and four
years) rather than setting a minimum threshold (e.g., seven or more
years) allowed for more direct comparison between series that might
have few periods below the 1906–2014 average, and those where flow
was below the long-term average in most or all years, which would
produce only one (very long) low-flow period when assessed using a
minimum threshold.

2.6. Drivers of flow variability

To evaluate the impact of initial conditions on mean flow, the fre-
quency of LFPs, and the frequency of VLFPs, we performed repeated
measures one-way Analysis of Variance (ANOVA) for each of the 125
distinct climate change scenarios (e.g., +1 °C sumT, 80% winP, and
110% sumP). Repeated measures ANOVA allowed us to account for the
fact that synthetic series 1 (2, 3, etc.) was identical under each initial
flow condition. This was especially critical when looking at sub-periods
of the data because, while the average change was consistent over the
full period, there were substantial differences in average temperature or
precipitation over a 30-year window of the input data.

Table 2
Regression model summary describing current water-year Colorado River flow at Lees
Ferry regressed against total winter (October through April) precipitation (winP, in
millimeters (mm)), total summer (May through September) precipitation (sumP, in mm),
mean summer temperature (May through July) (sumT, in degrees Celsius (°C)), and the
previous water-year flow at Lees Ferry (pflow) in million acre feet (maf). Coefficients
were determined using data for the entire period of record (1906–2014).

b s.e. t p

Intercept 5.09463 4.430789 1.150 0.2529
winP (mm) 0.07067 0.004548 15.537 <0.0001
sumP (mm) 0.01897 0.005448 3.481 0.0007
sumT (°C) −0.86258 0.228159 −3.781 0.0003
pflow (maf) 0.27067 0.041781 6.478 <0.0001

R2= 0.8203
R2a= 0.8133 (p < 0.0001)
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We then identified the synthetic flow series with the 25 highest
(≥95th percentile) and 25 lowest (≤5th percentile) overall average
flow and LFP/VLFP frequencies under moderate initial flow within each
climate change scenario and investigated the synthetic climate series to
assess what climate characteristics might drive the “best case” (highest
average flow or lowest number of LFPs or VLFPs) versus “worst case”
(lowest average flow or highest number of LFPs or VLFPs) within a
climate scenario. These were identified separately for each variable
(average flow, number of LFPs, and number of VLFPs), as the series
with the lowest average flow did not necessarily have the highest
numbers of drought periods. We looked at characteristics describing the
variability of the input climate data (minimum value, maximum value,
and standard deviation) and the average climate during the first and
last 10 years of the series. Climate conditions during the best and worst
case simulations were compared with a two-sided t-test. Because the
impacts of initial conditions on average flow and drought frequency
were relatively modest (see Section 3.2), analysis was limited to mod-
erate initial flow conditions. This also simplified analysis and data
presentation.

All computation was performed in R (R Core Development Team,
2008), using the MuMin (Bartoń, 2016), vioplot (Adler, 2015), raster
(van Hijmans et al., 2016), rgdal (Bivand et al., 2016), ez (Lawrence,
2016), and sp (Pebesma et al., 2016) packages.

3. Results

3.1. Impact of climate scenarios on flow

As expected, warmer and drier conditions led to lower average flows
(Fig. 2). For a given precipitation change, flows were lower with greater
temperature increases. However, distinctly different changes in climate
can also produce similar changes in average flow. For example, average
flows similar to the 1906–2014 observed average (indicated by the
dashed line in Fig. 2) are produced in scenarios with (1) no changes in
temperature or precipitation; (2) a 10% increase in winP, a 20% de-
crease in sumP, and 1 °C warming in sumT; (3) a 10% increase in winP,
no change in sumP, and 2 °C warming in sumT; (4) a 20% increase in
winP, a 20% decrease in sumP, and 3 °C warming in sumT; or (5) a 20%
increase in winP, a 10% increase in sumP, and 4 °C warming in sumT.

There also was variability in the average flow within climate sce-
narios such that identical changes in mean climate can produce average
flow estimates that varied between 0.08 and 0.65 million acre feet
(maf) when all initial flow values were considered, with greater
variability under warmer and drier conditions (Fig. 2). The upper end of
the range in values of average flow conditions is larger than the annual
allotment of water from the UCRB for Nevada (SNWA, 2017).

Warmer and drier scenarios also influenced the number of LFPs
(Fig. 3) and VLFPs (Fig. 4). Decreases in winP appeared to be more
effective in driving increases in LFPs and VLFPs than decreases in sumP.
Warming also enhanced the likelihood of significant periods with below
average flow (Figs. 3 and 4). As with mean flow, the number of LFPs
and VLFPs displayed substantial variability (Figs. 3 and 4) even with
identical changes in mean climate. For example, with 2 °C warming and

no change in sumP or winP there were between 0 and 36 LFPs (Fig. 3).
In addition, similar numbers of LFPs and VLFPs can be produced under
very different mean climate scenarios. For example, over 20 different
sets of climate changes resulted in simulated flow series with approxi-
mately 25 VLFPs.

3.2. Impact of initial basin conditions on flow

Initial basin conditions affected streamflow primarily in the early
portion of the simulations. Under all climate change scenarios, low
initial flow conditions were associated with low average flow during
the first 30 years of the simulations (p < 0.05, Fig. 5). Flow series with
the same input climate data and different initial basin conditions were
essentially identical by the mid-point of the 109-year simulation
(p > 0.05, Fig. 5). However, the influence of initial conditions during
the early part of the simulations was substantial enough to impact
overall averages, such that dry initial basin conditions were also asso-
ciated with low average flow over the full 109-year period. Initial flow
conditions also influenced the number of LFPs and VLFPs under certain
climate conditions. In 81 of 125 climate scenarios, repeated measures
ANOVA identified a significant (p < 0.05) influence of initial condi-
tions on the number of LFPs (indicated by the asterisks in Fig. 3). Initial
conditions significantly impacted the number of VLFPs in 89 of 125
climate scenarios (indicated by the asterisks in Fig. 4).

Table 3
Summary of precipitation change scenarios and codes used to identify them. Each precipitation change scenario was evaluated in combination with mean summer temperature increases
of 0, +1, +2, +3, and +4 °C.

Winter precipitation change (%) Summer precipitation change(%)

80% 90% 100% 110% 120%

80 wP080;sP080 wP080;sP090 wP090;sP100 wP080;sP110 wP080;sP120
90 wP090;sP080 wP090;sP090 wP090;sP100 wP090;sP110 wP090;sP120
100 wP100;sP080 wP100;sP090 wP100;sP100 wP100;sP110 wP100;sP120
110 wP110;sP080 wP110;sP090 wP110;sP100 wP110;sP110 wP110;sP120
120 wP120;sP080 wP120;sP090 wP120;sP100 wP120;sP110 wP120;sP120

Fig. 2. Violin plots showing the range of average flows produced by each climate scenario
for all initial conditions combined by climate change. The horizontal dashed line indicates
the 1906–2014 average water-year flow. Each of the 25 unique precipitation change
combinations is listed across the x-axis. The color of the interior corresponds to the winter
precipitation change, and the color of the outline corresponds to the summer precipita-
tion change (maroon= 80% of observed precipitation, gold= 90% of observed pre-
cipitation, black= no change in observed precipitation, cyan=110% of observed pre-
cipitation, navy= 120% of observed precipitation). Flow produced by different
temperature changes are labeled along the right-hand axis. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this
article.)
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3.3. Influence of the temporal characteristics of input climate data

Average climate during the first 10-years of each simulation differed
strongly between the highest and lowest average flows within a climate
change scenario. Table 4 shows the number of climate scenarios in
which a specific climate variable differed significantly (p < 0.05) be-
tween best and worst case flow scenarios. We also show the number of
significant tests in which the value of the climate variable was higher
for worst-case series than best-case series. For example, winP and sumP
were significantly higher and sumT lower during the early part of each
simulation in the highest average flow scenarios than in the lower
average flow scenarios (Table 4). The most likely explanation for this is
that warm and dry conditions early in the time series led to lower flows
in the early part of the time series. Because the model includes a lagged
effect of flow, these early flow values suppress flow volumes into the
middle of the series, leading to overall low average flow. Counter-
intuitively, winP was greater during the last 10 years in the series with
the lowest average flows. This is likely due to the fact that those series
were relatively dry early on, so had to be wetter late in the series to
maintain the specified average mean climate. The variability of the

input climate data (indicated by the standard deviation, maximum, and
minimum values) had essentially no influence on the overall average
flow, with only a few scattered significant differences in the climate
that produced wetter and drier average flows within a given climate

Fig. 3. Frequency of low-flow periods (LFPs) in each climate scenario with moderate
initial basin conditions (50th percentile of observed 1906–2014 flow). Low-flow periods
are consecutive periods, broken by no more than one year at a time when the water-year
flow is less than the 1906–2014 average. All possible 7-year periods were evaluated, so
each 109-year long series can contain a maximum of 103 LFPs. Each of the 25 unique
precipitation change combinations is listed across the x-axis. The color of the interior
corresponds to the winter precipitation change, and the color of the outline corresponds
to the summer precipitation change (maroon= 80% of observed precipitation,
gold=90% of observed precipitation, black= no change in observed precipitation,
cyan=110% of observed precipitation, navy= 120% of observed precipitation). Filled
circles indicate a zero value in all flow scenarios. Asterisks indicate climate scenarios in
which repeated measures ANOVA detected a significant effect of initial conditions. (For
interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 4. Frequency of very low-flow periods (VLFPs) in each climate scenario. Very low-
flow periods are consecutive periods, broken by no more than one year at a time when the
water-year flow is less than 75% of the 1906–2014 average. All possible 4-year periods
were evaluated, so each 109-year long series can contain a maximum of 106 VLFPs. The
color of the interior corresponds to the winter precipitation change, and the color of the
outline corresponds to the summer precipitation change (maroon= 80% of observed
precipitation, gold= 90% of observed precipitation, black=no change in observed
precipitation, cyan= 110% of observed precipitation, navy= 120% of observed pre-
cipitation). Filled circles indicate a zero value in all flow scenarios. Asterisks indicate
climate scenarios in which repeated measures ANOVA detected a significant effect of
initial conditions. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Comparison of the range of average flows produced by wet (75th percentile of
observed 1906–2014 flow) and dry (25th percentile) initial basin conditions. Results are
shown for the full 109-year period, simulation years 1–30, 40–69, and 80–109.
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scenario.
In contrast, variability of the driving climate data differed strongly

between simulations with many and few LFPs and VLFPs. The re-
lationships were, however, sometimes complicated. For example, the
standard deviation of sumT differed significantly between wet (few
LFPs) and dry (more LFPs) flows for 84 different climate change sce-
narios. However, the sign of the response wasn’t consistent. In 20 sce-
narios, more variable sumT was associated with a greater number of
LFPs, while in 64 scenarios more variable sumT led to fewer LFPs. In
general, more variable sumT was associated with increases in LFPs
under scenarios with increasing precipitation. Other characteristics of
the climate data that differed between flow series with particularly high
and low numbers of LFPs were the minimum and maximum pre-
cipitation and temperature values. Similar, though not identical, in-
fluences were found for VLFPs (Table 4).

4. Discussion

In analyzing a large ensemble of statistically simulated streamflow
projections, we found that there is substantial variability in average
flow and the frequency of low-flow events within a given climate
change scenario, and that similar flow conditions can be generated by a
range of distinctly different climate scenarios. One of the drivers of this
spread in flow is initial basin condition, which has a strong and con-
sistent effect on water-year average flow during the early parts of si-
mulations under essentially all climate changes, as well as on the fre-
quency of low- or very low-flow events under many circumstances.
Average climate conditions in the first ten years of the simulations also
appear to influence overall average flow. Water-year flow in the UCRB
displays significant persistence from one year to the next during the
1906–2014 period (AR1=0.25, p < 0.05). The simple statistical
model used here includes persistence in UCRB flow in the form of a lag-
1 flow term (Table 2). Thus, it is not surprising that both initial basin
conditions and conditions during the first decade of a simulation in-
fluence mean flow in a model with explicit persistence.

River forecast models are regularly run using the best estimate of
initial conditions, or with ranges of initial conditions to provide better
seasonal projections (Harpold et al., 2016; Franz et al., 2003). Studies
focused on estimating the impacts of long-term climate variability and
change on flow, however, often do not account for the ways in which
initial conditions influence outcomes, although Koczot et al. (2011)
demonstrated that the effects of initial conditions on flow projections
can be substantial. Under all climate scenarios investigated in this
study, dry initial basin conditions were strongly associated with low
average flows early in the simulations. While the impact of initial
conditions did not persist to later years, the influence of dry early
conditions was still detectable in the average flow over a full century.
The simple model used here prescribes a degree of autoregressive be-
havior in flow that may not be constant in the real world, but the results
suggest that the effects of initial hydrologic conditions on the variability
of flow projections may be under-appreciated in hydrological studies
that take a top-down approach. This may be particularly important for
studies that are focused on the next few decades, but also is important
for average flow conditions computed over as much as a century.

Internal variability is an important source of variability in climate
model simulations. Over multi-decadal periods, internal variability can
influence the direction of trends (Deser et al., 2012a), and at regional
scales, internal variability contributes to projection uncertainty for up
to a century (Hawkins and Sutton, 2009). It is often considered to be a
form of “irreducible” uncertainty (Hawkins et al., 2016), i.e., a type of
uncertainty that cannot reasonably be resolved. Moreover, many cli-
mate models do not skillfully simulate all of the processes that influence
multi-annual to multi-decadal variability (Ault et al., 2012, 2014; Deser
et al., 2012b). Thus, it is inevitable that top-down approaches will
necessarily include input climate data with different temporal char-
acteristics, as well as differing trends and changes in mean climate.

This simple study shows that the temporal characteristics of the
input climate data can influence the frequency of LFPs and VLFPs, but
that the impacts are not necessarily straightforward. Large interannual
standard deviations in sumP are associated with more frequent LFPs

Table 4
Results from t-tests comparing characteristics of the input climate data that generated the wettest 95% (highest average flow, lowest number of low (LFP) or very low flow (VLFP) periods)
and driest 5% (lowest average, highest number of low or very low flow periods) stream flow simulations for each climate change scenario. Analysis was limited to simulations initiated
with moderate flow (50th percentile of observed 1906–2014 water-year flow). Under each flow characteristic (Average Flow, #LFP, or #VLFP), the first column shows the number of
climate scenarios in which a specific climate variable differed significantly (p < 0.05) between best and worst case flow scenarios. Thee second column under each flow characteristic
shows al the number of significant tests in which the value of the climate variable was higher for worst case series than best case series. Also indicated are the percentage of climate
scenarios represented. There are 125 climate scenarios, so 125 indicates that a climate variable characteristic differed significantly between the wettest and driest simulations under all
climate change scenarios.

Mean flow #LFP #VLFP

# significant (p < 0.05) # significant dry > wet # significant (p < 0.05) # significant dry > wet # significant (p < 0.05) # significant dry > wet

Average first 10 years
winP 125 (100%) 0 (0%) 13 (10%) 13 (10%) 10 (8%) 10 (8%)
sumP 125 (100%) 0 (0%) 10 (8%) 1 (1%) 22 (18%) 2 (2%)
sumT 125 (100%) 125 (100%) 11 (9%) 6 (5%) 5 (4%) 4 (3%)

Average last 10 years
winP 125 (100%) 125 (100%) 2 (2%) 1 (1%) 3 (2%) 3 (2%)
sumP 0 (0%) 0 (0%) 1 (1%) 1 (1%) 2 (2%) 0 (0%)
sumT 100 0 (0%) 5 (4%) 4 (3%) 7 (6%) 1 (1%)

Interannual standard deviation
winP 0 (0%) 0 (0%) 42 (34%) 0 (0%) 52 (42%) 17 (14%)
sumP 2 (2%) 2 (2%) 47 (38%) 14 (11%) 20 (16%) 7 (6%)
sumT 0 (0%) 0 (0%) 84 (67%) 20 (16%) 84 (67%) 60

Maximum annual value
winP 0 (0%) 0 (0%) 64 (51%) 10 (8%) 64 (51%) 7 (6%)
sumP 0 (0%) 0 (0%) 44 (35%) 6 (5%) 47 (38%) 8 (6%)
sumT 0 (0%) 0 (0%) 39 (31%) 0 (0%) 73 (58%) 46 (37%)

Minimum annual value
winP 0 (0%) 0 (0%) 30 (24%) 24 (19%) 20 (16%) 20 (16%)
sumP 0 (0%) 0 (0%) 28 (22%) 5 (4%) 23 (18%) 20 (16%)
sumT 0 (0%) 0 (0%) 54 (43%) 49 (39%) 76 (62%) 24 (19%)
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under dry conditions, but less frequent LFPs when conditions are wet.
Given the potential for diverse (and usually un-described) variance
characteristics in the numerous downscaled climate projections used to
drive hydrological models, it is worth evaluating streamflow projec-
tions in the context of the temporal characteristics of the driving data.
This may be particularly important when analyzing the frequency and
persistence of drought periods.

The statistical model used here may be inappropriate for some of the
more detailed questions that are of interest to researchers and water
managers. It is likely that there will be ecological or hydrological
changes in a basin that may make the statistical model less appropriate
for flow estimates far into the future. As the model is not spatially ex-
plicit, it assumes stationarity in the spatial patterns of precipitation and
temperature, which we know can impact flow (e.g., Woodhouse et al.,
2016; Solander et al., 2017). Finally, changes in climate could also alter
relationships between seasonal climate and streamflow. Increasing
temperatures could enhance evapotranspiration, reduce rain-to-snow
ratios, and alter snowmelt dynamics (e.g., Barnhart et al., 2016;
Solander et al., 2017). All of these types of changes could introduce
non-linear streamflow responses that a linear model, like the one used
here, could not begin to capture. Moreover, different formulations of
the model could generate somewhat different results. For example, a
model that does not include initial basin conditions will not be influ-
enced by them. However, such models tend to be more sensitive to
lagged climate variables (Table 1). Thus, flow is still impacted by initial
conditions; the difference is merely in whether the initial conditions are
ascribed to the basin hydro-climatic conditions or to prior-year climate.

5. Conclusions

Numerous studies have addressed the question of how changing
climate will influence streamflow, yet water resource managers tasked
with providing sufficient water for irrigation, power generation, and
household needs, still have concerns about responding to changing
climate and about the large uncertainty in climate change projections.
Will a new set of climate projections associated with CMIP6 require re-
evaluating streamflow projections? Could there be surprises where re-
latively modest changes in climate produce significant drought?

Water managers were integral in defining key elements of the re-
search, and many provided useful and critical feedback on which results
were particularly valuable and how they could be most effectively
displayed. For example, managers’ interest in the role of temperature
drove the need to include temperature as a forcing variable. We have
presented these results to managers through a webinar and project
meeting and are continuing our collaboration on additional questions.
For greater dissemination of the results, we plan to translate the peer-
reviewed paper into a shorter publically accessible fact sheet and host a
question-and-answer period with managers working in the Colorado
basin and across the western U.S.

The approach we have taken here, driving a simple statistical model
with synthetic climate data, provides critical context for evaluating
existing streamflow projections made with more traditional “top-down”
approaches. For example, such studies could be used to identify metrics
that are associated with particularly modest or severe consequences
relative to the projected climate change. Existing studies could be as-
sessed in the context of those metrics. The approach taken here pro-
vides an example for exploring the concerns raised by water managers
regarding future hydroclimatic conditions, and targeting particular
timescales of significance to management, in a quick and economical
way. Moreover, these large ensemble studies can assist managers in
prioritizing which climate scenarios, initial conditions, and ecohy-
drological changes should be chosen for more detailed analysis, po-
tentially reducing the costs and effort associated with climate change
impacts analyses and planning.
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