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Abstract

Rising temperatures associated with climate change are impacting household energy use.
Many of today’s industrial-technological-urban humans thermoregulate in the face of varying
temperatures using extra-metabolic energy use for heating and cooling our indoor microcli-
mates. Previously, household energy use as a function of temperature change over seasons
and time has been described using a three-part model of thermoregulation, the Extra-Meta-
bolic Scholander-Irving model (EMSI), where energy use is lowest in the thermal neutral
zone around room temperature and increases in colder and hotter temperatures. However,
the EMSI model has only been evaluated for moderately warm cities to date, covering only
two parts of the three-part model and lacking evaluation of data for extremely hot tempera-
tures. We show that household energy use in Arizona, a U.S. state that includes hot semi-
arid environments, varies across topography, and increases in response to the hottest sum-
mer months—exemplifying the third part of the EMSI model. Additionally, household energy
use is lowest in the spring and fall and increases in response to colder temperatures in the
winter. This relationship has hysteresis related to differences in household income; service
regions with lower-income households delay the onset of extra-metabolic energy use for
cooling. We use this model to gain predictive insights into energy use demand due to ongo-
ing warming in the context of the desert city of Yuma, Arizona, where a relatively small
increase in mean temperatures of ~1.5°C since the Industrial Revolution produced a 20-day
increase (6%) in cooling days annually. Our study expands the EMSI model of thermal regu-
lation to the previously missing hot part of the model, thereby gaining insights into the unique
challenges of sustaining extra-metabolic thermoregulation in the face of global warming.

Introduction

Addressing heat stress is one of the greatest challenges facing humans because climate change
is increasing the frequency, intensity, and duration of hot extremes [1]. Several record-

PLOS Climate | https://doi.org/10.1371/journal.pcim.0000110  April 7, 2023

1/12


https://orcid.org/0000-0002-5855-2428
https://orcid.org/0000-0002-8683-8861
https://orcid.org/0000-0002-5549-0372
https://orcid.org/0000-0002-7361-3858
https://doi.org/10.1371/journal.pclm.0000110
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pclm.0000110&domain=pdf&date_stamp=2023-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pclm.0000110&domain=pdf&date_stamp=2023-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pclm.0000110&domain=pdf&date_stamp=2023-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pclm.0000110&domain=pdf&date_stamp=2023-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pclm.0000110&domain=pdf&date_stamp=2023-04-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pclm.0000110&domain=pdf&date_stamp=2023-04-07
https://doi.org/10.1371/journal.pclm.0000110
https://doi.org/10.1371/journal.pclm.0000110
https://doi.org/10.1371/journal.pclm.0000110
http://creativecommons.org/licenses/by/4.0/

PLOS CLIMATE

Household energy use responses to extreme heat

should provide amble guidance for both the
replication and reproduction of this study.

Funding: This work was funded by the Bridging

Biodiversity and Conservation Science group at the

University of Arizona via the Arizona Institutes for
Resilience. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

Abbreviations: AJO, Ajo Improvement Co; APS,
Arizona Public Service; EMSI, Extra Metabolic
Scholander-Irving; EIA, Energy Information
Administration; HIFLD, Homeland Infrastructure
Foundation-Level Data; MOR, Morenci Water &
Electric; MOV, Mohave Electric Co-Op; NUA,
Navajo Tribal Utility Authority; NVP, Navopache
Electric Co-Op Inc.; S-1, Scholander-Irving; SRP,
Salt River Project Agricultural Improvement and
Power District; TEP, Tucson Electric Power; TRC,
Trico Electric Cooperative; UHI, Urban Heat Island;
UNS, UNS Energy Corporation.

breaking heat events occurred around the globe in 2021 [2]. These heat events are unequivo-
cally caused by climate change and in urban areas, their effects are compounded by the urban
heat island (UHI) effect [3]. The UHI effect is caused by the planning, design, and mechanical
operation of urban areas which results in increased temperatures compared with rural areas at
their peripheries [4]. Cities in the U.S. are projected to be on average 5.55°C hotter in the after-
noon and 7.77°C hotter at night by the end of the century [5]. Indicative of hotter locations
around the globe, cities in the U.S. Southwest are getting hotter faster, illustrated by the fact
that the top four fastest-warming cities are in the U.S. Southwest [6]. Despite clear climatic,
regional, and scientific evidence of increasing heat stress in this region, there is a noticeable lag
in heat planning and governance compared to other climate risks [7]. Thus, a better under-
standing of future energy consequences of heat in cities and inequities in heat mitigation and
management efforts is needed as temperatures continue to increase [7].

To fully address the challenges affecting energy use in cities due to climate change and the
UHI effect, we investigate the nexus of energy use and temperature to help inform heat plan-
ning and governance. Multiple frameworks can be used to assess energy use and temperature
[8-10]. In this study, we link heat with temperature and energy use through an extended Scho-
lander-Irving (S-I) model [11]. This approach has the advantage of being grounded in bio-
physical theory rather than being a statistical approach that adds socio-environmental
variables as needed, while simultaneously contributing to a general understanding of energy
use and temperature relationships. This biophysical model for thermoregulation in warm-
blooded animals provides insights into the energetic cost of household thermoregulation in
modern humans [12, 13]. Warm-blooded animals have evolved to maintain constant body
temperatures (homeostasis) in the face of varying environmental temperatures by modulating
biological metabolism regulated by the hypothalamus, and humans are no exception [14]. For
example, humans use biological metabolism to sweat and cool themselves via evaporative cool-
ing with increasing temperatures. Modern humans are unique, however, because they can also
incorporate “extra-metabolic” energy using fossil fuels and renewable energy to thermoregulate
our microhabitats in variable environments [15]. The functional role of the hypothalamus in
maintaining homeostasis has been replaced mechanically by a thermostat [16]. Increasing or
decreasing temperatures from a thermal neutral zone in the biological S-I models correspond
with increasing biological energy demand. Despite a clear overlap between the S-I and EMSI,
the EMSI extension has yet to be evaluated for hot temperatures in urban humans [12, 13].

Here, we build on this literature to evaluate the unique human relationship between “extra-
metabolic” energy use and temperature by expanding the EMSI model with data for regions
that experience high average temperatures and extreme heat events. We draw on the Scholan-
der-Irving biophysical model for warm-blooded animals, which includes three parts: a zone of
cold regulation, a thermal neutral zone, and a zone of heat regulation (Fig 1A), as seen in both
the desert cottontail (Fig 1B) and humans (Fig 1C). Previous studies of cities have shown that
the EMSI biophysical model for warm-blooded animals can be applied to the thermoregula-
tion of households [Fig 1D, 12, 13, 16] for the cold and moderate parts of the three-part model.
However, there is currently no study exploring the use of the EMSI model in cities that experi-
ence high annual temperatures—the third part of the model (Fig 1D). We studied Arizona, a
state in the U.S. Southwest that includes seasonally hot cities in diverse hot semi-arid environ-
ments, to evaluate the third part-the hot temperatures on the right side—of the EMSI curve.
Arizona is an ideal state to study for the third part of the curve as it has cities with monthly
high temperature averages of 42.7°C.

We combine data for “extra-metabolic” energy use and temperatures from 2019 to i)
develop empirical models of the household energy use response to temperatures to evaluate
the hottest part of the EMSI model and ii) produce future projections of household energy use.
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Fig 1. The evolution of the Extra-Metabolic Scholander-Irving model. The Scholander-Irving model of metabolic
energy use in thermoregulation in mammals is displayed through A) A conceptual/theory model, B) empirical data for
desert cottontail rabbit (Sylvilagus audubonii) from Tucson, AZ which is modified from [17], C) Human biological
metabolic data of naked humans adjusted from Hill et al. (2013). The human S-I curve lacks hot temperature data
because of ethical research standards. The TNZ line is approximately the same width as cities and animals (10°C).
Adding insulation measures, like clothing, to base human data would decrease the slope of the line left of the TNZ. (See
Hill et. al 2013 for an in-depth explanation of the human S-I curve), and D) Extra-Metabolic Scholander-Irving model
for a previous City study from Hill et al. (2013) modified to show a lack of hot data. Note the scale differences due to
the data resolution (monthly vs. daily) and collection methods.

https://doi.org/10.1371/journal.pcim.0000110.g001

We present results showing that the EMSI model applies to cities in hot climates and that there
is spatial variability in household energy use between hot cities differing in income. We also
demonstrate that heat waves and changing climate will affect household energy use. Finally,
we discuss the benefits of this modeling system, and the broader implications that increased
heat has on health and urban planning. We end with opportunities for extension and future
studies. The 3-part EMSI model shown here bridges disciplinary divides by linking a founda-
tional biophysical model of thermoregulation to the unique human ecology in the face of
global change. The result is a holistic perspective on urban metabolism and heat vulnerability
discourse in the face of rising temperatures.

Methods
Energy and temperature data

We obtained energy use data from the Energy Information Administration (EIA) [18]. Nine
energy service regions provided the monthly data required for our analysis, with 36 total
regions in Arizona. The data are reported as megawatt-hours used per month and the number
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of residential customers for each service region, or service provider and electric utility. We
used the formula, 1,000,000*[megawatt hours per month] / [number of customers] to calculate
monthly watt-hours per capita. The 9 service regions evaluated were: Ajo Improvement Co.,
Arizona Public Service, Morenci Water & Electric, Mohave Electric Co-Op, Navajo Tribal
Utility Authority, Salt River Project Agricultural Improvement and Power District, Tucson
Electric Power, Trico Electric Cooperative, and UNS Energy Corporation. The research team
contacted the energy company, Navopache Electric Cooperative, and obtained the monthly
average energy use for 2019 from their head office. We incorporated these data into the EIA
data for 10 total service regions.

We extracted temperature data for the models from the dataset PRISM [19]. We used aver-
age monthly temperatures for each service region weighted by population. For example, in the
service region that largely consists of Maricopa County and the Phoenix metropolitan area, we
used monthly average urban temperatures for each municipality. We then weighted these val-
ues such that, if a service region had two cities, A and B, with A consisting of 75% of the popu-
lation of the service region and B with 25%, the temperature value for the region would have
city A accounting for 75% of the average temperature and B accounting for 25%. We obtained
population data from the 2019 American Community Survey 5-year estimates provided by the
U.S. Census Bureau and organized through the program Social Explorer [20]. The polygons
for each city were overlaid with the polygons from the Homeland Infrastructure Foundation-
Level Data (HIFLD) data set to determine which cities, townships, and census-designated
areas were within the bounds of a particular service region [21].

The total population of all service regions included in our analysis was 5.52 x 10° people,
representing approximately 78% of Arizona’s estimated population in 2019.

Per capita income calculations

We used two sets of geo-referenced data to calculate each service region’s median per capita
income. The first is the HIFLD polygons for the boundaries of the service region. The second
is the polygons for census tracts from the 2010 Census provided by Esri and the Census
Bureau. We then obtained median per capita income data from the Census Bureau through
the 5-year estimate 2019 American Community Survey for each census tract [22]. We used
ArcGIS Pro (ver 2.9.0) to display both sets of polygons and identify where each census tract fits
within the boundaries of the electric regions. The census tract polygon had to be inside part of
the service region bound to be included; in the case that two service regions evenly shared a
census tract, we determined which region had more surface area allocated and assigned the
tract to that region. The data along these contested borders were reviewed to ensure that the
service region’s boundaries were comparable and, therefore, would not affect the results of the
assignment of the census tract to one utility.

In the cases where census tracts encompassed multiple utilities (e.g., Mohave and UNS), the
population distribution within each census tract was checked using the Google Earth applica-
tion and data from Social Explorer [20]. The municipality in question was also cross-referenced
with the utility’s “users” list to ensure that the population within the census tract was receiving
the assigned service region’s energy. The incomes per census tract were arranged in Microsoft
Excel and analyzed to produce a median per capita income calculation for each service region.

Temporal projections data

We obtained data from 3 land-based weather stations in Yuma, AZ, through the National Oce-
anic and Atmospheric Administration and the National Center for Environmental Informa-
tion to investigate the temporal increase in air temperatures [23]. The stations are point
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measurements and record daily temperatures in Fahrenheit, both minimums and maximums,
from 1893 to 2020. The data were sorted in Excel to remove missing data or days that had only
the minimum or maximum temperature recorded and not both. Of the 45,168 days analyzed
in the time period, 281 had incomplete data, bringing the missing days to 1.24% of the total.
The remaining days were divided in half to represent two equal periods: historic (1893-1955)
and recent (1955-2020). The minimum and maximum temperatures for each day were aver-
aged and converted to’C using Excel. We determined the average temperature shift between
the two time periods using a regression line as well as the median and mode through descrip-
tive statistics. Additionally, the Yuma data was also organized and run through R Studio to cre-
ate a plot of daily temperatures for 1893-2020. We calculated the mean temperature increase
over this time period as well as the increase in the frequency of days with average temperatures
over 37.7°C, a temperature which at any relative humidity level is classified on the Heat Index
by the Arizona Department of Health Services [24] as “extreme caution” or “danger”. We also
chose 37.7°C as a baseline because it is a temperature that is often associated with heat alerts
and is a commonly used metric.

Results
1) The extension of the EMSI for service regions in Arizona

The collapsed data of all Arizona service regions follows the expected pattern of the EMSI
curve (Fig 2). Across Arizona, monthly average household energy varied from 1.96 x 10° watt
hours per month to 2.88 x 10° watt hours per month. Linear regression results for the warmer
responsive side of the curve yielded the regression equation y = 6.95 x 10* x—9.14 x 10°. Using
this regression, we can predict and project the energy demanded by any energy utility at any
given monthly average temperature. For example, if July in the region of Tucson Electric
Power was on average 2°C hotter (33.6°C), the corresponding energy use would increase by
1.62 x 10° watt hours per household. A 2°C increase in monthly average temperature more
than doubled the energy demand per household.

2) Arizona Extra-Metabolic Scholander-Irving curves show seasonality and
variability
Household energy varied use response across Arizona service regions (Fig 3). All three parts of
the EMSI model were captured. There was a surprising variation in the ten service regions ana-
lyzed. The service regions spanned areas with variable geography and climates. Two patterns
of EMSI curves were observed (Figs 3 and 4). The “bowtie” pattern is observed in Navajo
Tribal Utility Authority, Mohave Electric Co-Op, Ajo Improvement Co., Trico Electric Coop-
erative, Morenci Water & Electric, and Navopache Electric Co-Op Inc. In the bowtie pattern, a
hysteresis appears, showing energy use lagging behind experienced temperature. In the spring
and early summer, households use less energy than in the late summer and fall, even when the
experienced average temperature is nearly the same. In contrast, the “buddy” pattern, in which
energy use for months roughly pairs up relative to time since the solstice, does not exhibit hys-
teresis. It is observed in Arizona Public Service, UNS Energy Corporation, Tucson Electric
Power, and Salt River Project Agricultural Improvement and Power District. Throughout the
year, the energy use pattern in these regions is more intuitive, with the hottest two summer
months corresponding with the most energy use. The difference in energy use between
months that share similar average monthly temperatures is minimal.

A possible answer to the hysteresis pattern observed in the “bowtie” service regions is that
the service regions with the lowest per capita income showed a delayed onset of cooling (Fig
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Fig 2. The collapsed EMSI curve for all service regions. Each energy utility is represented by a color and a unique three-letter code. They are,
respectively, Ajo Improvement Co. (AJO), Arizona Public Service (APS), Morenci Water & Electric (MOR), Mohave Electric Co-Op (MOV),
Navajo Tribal Utility Authority (NUA), Navopache Electric Co-Op Inc. (NVP), Salt River Project Agricultural Improvement and Power District
(SRP), Tucson Electric Power (TEP), Trico Electric Cooperative (TRC), and UNS Energy Corporation (UNS). The lines are models for the best
fit above and below the thermoneutral zone, (11°C to 21°C) as outlined in Hill et al. 2013 [12].

https://doi.org/10.1371/journal.pcim.0000110.9002

4). Other possible causes of the variation in the shape of the response curve could include
housing insulation, microclimate, and energy pricing. The delayed onset of cooling in some
regions and not others is a surprising and novel finding in the study of EMSI curves.

3) Incorporating heat waves into energy predictions

Climate data for Yuma, Arizona illustrates that a small increase in mean temperature has a
large impact on experienced heat and therefore energy use (Fig 5). A comparison of the his-
toric (1893-1955) to the recent period (1955-2020) shows that the mean air temperature has
risen by 1.5°C. This is 0.4°C greater than the global average for mean air temperature rise
which is best estimated at 1.07°C [1]. This mean shift resulted in a 6% increase in the days over
22°Cin Yuma. A day with an average of over 22°C indicates a “cooling day”, where a person
would have to cool their house to stay in a thermoneutral state [12, 13]. A 6% increase in cool-
ing days a year translates to over 20 additional days of cooling per year. Additionally, the
recent period has increased in days with an average of over 37.7°C. The historic period saw 37
total days over 37.7°C, whereas the recent period had 381 days, resulting in an order of magni-
tude increase. In the recent period, the days over 37.7°C happened in greater frequency and
succession, indicating more severe heat events.
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Fig 3. Arizona Extra-Metabolic Scholander-Irving curves. 12-month energy use data by service region from the EIA combined with georeferenced
temperature and humidity data for Arizona cities/communities, weighted by population. Centered is a map of the state of Arizona, with outlines of all 22
service regions. The striped lines indicate lands governed by tribal nations. The pink circles represent cities or town localities, and the blue dots represent
tribal localities. The service regions are color-coordinated to their respective EMSI curve graph and three-letter label. The y-axis (monthly watt hours per
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FeatureServer [25].

https://doi.org/10.1371/journal.pcim.0000110.9003

Discussion

We discuss four major takeaways from our results. First, our results extend temperature-
household energy use relationships to the novel third part of the EMSI curve, mirroring the
established relationship in mammalian species. Second, our work expands on previous studies
by showing that cities and energy regions can be modeled using an extended mammalian ther-
moregulation theory, not just in cold or thermal neutral settings, but also in hotter ones. The
curves in Figs 2 and 3 confirm and extend the work shown in Hill et al. (2013; 2022) [12, 13]
despite the different scaling of daily energy use versus monthly energy use. Third, our results
highlighted hysteresis in energy use response to temperatures corresponding to household
income. The EMSI for each individual region fell into one of two patterns, the “buddy” and
“bowtie.” Our study found a loose pattern of “bowtie” shapes falling on the lower end of the
service region median per capita income scale. We propose that the variability in the bowtie
shape is caused by a delayed behavioral reaction (i.e., cooling measures) to warming weather.
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Median per capita income calculations for ten electric regions in Arizona

Scholander Curve Median

Shape Service Territory | Per Capita Income
- Aug  INUA $12,964
AJO $20,483

Oct Jul
NVP $22,293
May Ll TRC $22,692
Bowtie MOV $23,269
MOR $26,277
UNS $27,624
APS $27,859
TEP $28,904
Buddy A2 $29,478

Fig 4. Arizona service region’s 2020 median per capita income. A table displaying the ordered median per capita income for
each service region in Arizona. Accompanying the table are two conceptual figures of the distinct shapes of the regions’ EMSI
curve shapes (buddy and bowtie).

https://doi.org/10.1371/journal.pcim.0000110.9004

This delayed response could be related to cost-saving measures, but more analyses would have
to be done to account for possible covariates such as alternative energy sources and cooling
technologies, including the use of wood in winter and evaporative coolers (“swamp coolers”)
in milder months. Finally, we use long-term temporal data from Yuma, AZ, to project future
energy demands coinciding with temperature rise.

Broader implications

Our analysis of Arizona’s energy service regions is a strong case for the successful modeling of
regions that experience high average temperatures. Arizona’s EMSI curves also present a large
amount of temperature range variation, as shown in Fig 3. Arizona has service regions that get
as hot as 35°C on average monthly and as low as -1°C on average monthly. This broad range
of temperatures and Arizona’s population density variability makes it an ideal model to assess
the scalability of this methodology. The broader implication of this study is that it uses publicly
available datasets which span the entire contiguous U.S. All data sets used in the study (i.e.,
temperature, energy use, and population) can be replicated to incorporate more states and cre-
ate regional or national analyses. This study has demonstrated the relative ease with which a
well-established biophysical Scholander-Irving model can be extended to understand house-
hold extra-metabolic energy demand using publicly available data. It can be a framework for
other states or nations to use to inform and predict possible scenarios of heat management
and heat-mitigation strategies. Furthermore, the EMSI curves illustrated here may further ben-
efit from insights from the biophysical Scholander-Irving model, which has explored how
insulation may change the slopes of the energy use response, thus having a practical use in mit-
igating inequities in climate change impacts.
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Shifts in daily temperatures in Yuma, AZ (1893 to 2020)
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Fig 5. Shifts in daily temperatures in Yuma, Arizona (1893 to 2020). Daily average distributions for Yuma, AZ over the past
century. Mean daily temperatures increased by ~1.5°C as noted by the black dashed line. Yuma date range: “Historic” is from
March 1893 —July 1955 and “Recent” is from August 1955 —Sept 2020. With some missing days (1.24%) for the total period. The
color gradient is formed by the Heat Index Chart from the Arizona Department for Health and Safety [23]. The solid black line
is set at 37.7°C to show the increasing number of days in the recent period with average temperatures over 37.7°C.

https://doi.org/10.1371/journal.pcim.0000110.9005

Urban exposure to heat events has increased by 200% globally, and the U.S. lacks heat gov-
ernance infrastructure to combat heat-related fatalities [7, 26]. Our study illuminates a model-
ing system that would be helpful in identifying vulnerable populations now and projecting
their future heat exposure. Heat is the leading weather-related killer in the U.S., even though a
significant number of heat-related deaths are preventable [27]. The populations that are partic-
ularly vulnerable to heat are adults aged 65 and older and children, as their bodies are less able
to adapt to heat than adults, and they must rely on others to help keep them safe [27]. If the
potential link to income we investigated is further validated, those with lower income would
be disproportionately impacted by rising temperatures in cities and vulnerable to the health-
related impacts of heat.

The data from Yuma, Arizona highlights a global shift in hotter average temperatures and
the increasing frequency of extreme temperature events. There has been an increase in days
defined by the Arizona Department of Health Services as being either “extreme caution” or
“dangerous” has increased by 64% since 1955 (Fig 5). These health indexes get more severe as
humidity increases, which is not a significant contributor to Yuma’s climate but would be a
concern in more humid cities. Our team acknowledges that our methods and data collection
are influenced by both climate change and the UHI effect. These two contributors are entan-
gled and our resolution of temperature data does not differentiate them as both have contrib-
uted to the increase in temperatures in urban areas [26].
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Future studies and coda

The Intergovernmental Panel on Climate Change’s Sixth Assessment report from Working
Group 3 stresses how critical it is to act now to make communities more resilient to the effects
of climate change [28]. The extension of the Scholander-Irving model to EMSI in cities helps
to understand the impacts of heat and how to measure heat-related impacts essential for
human well-being. This small-scale analysis is important in understanding and unpacking
multi-layered problems like climate change. This study could be expanded to discover what
socio-ecological variables and materials for insulation may cause the variability in the EMSI
curves’ shapes and sizes. The datasets used present exemplary tools to evaluate more EMSI
curves for more regions and expand this methodology. Our study does have limitations
regarding the resolution of the study, as monthly averages hide important variability and
anomalies compared to daily resolution energy data. This study does explore extreme or maxi-
mum temperatures, which play important roles in heat management and public health
monitoring.

In conclusion, with global temperatures rising and heat waves becoming more frequent,
more intense, and lasting longer [29], it is essential to uncover new ways of modeling and
assessing the impacts of heat. This study expands on previous work to show novel insights into
how humans thermoregulate through the heating and cooling of dwelling spaces using extra-
metabolic energy. The 3-part prediction for the S-I in non-human mammals was presented in
the original 1950 paper to explain the relationship between environmental temperature and
metabolic energy used to maintain constant internal temperatures (homeostasis). Our study is
the first to show the extended EMSI model for maintaining constant household temperature
even for the hottest temperatures of the 3-part S-I model. With the majority of humans living
in cities, studies of urban metabolism are a critical tool for interdisciplinary studies of sustain-
ability and urban policy [30, 31]. Addressing urban heat with as many quality tools as possible
is critical; it saves lives.
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