Assessing Cool Corridor Heat Resilience Strategies

for Human-Scale Transportation

Kristina Currans, University of Arizona (co-PI)

Ladd Keith, University of Arizona (PI) Nicole Iroz-Elardo, Willamette University

(**PI**)

Meet the Team

Ladd Keith **Assistant Professor**, **Urban Planning** and Sustainable Built Environments **University of Arizona**

Kristina Currans

Associate Professor Urban Planning University of Arizona

Students: Ash Avila, Lauren Heath, Ethan Wissler, Andrew Birkelbach, and Brenden Little.

Nicole Iroz-Elardo* Assistant Professor, Public Health, Ethics, Advocacy, and Leadership Willamette University

* Majority of these slides were developed by Prof. Iroz-Elardo

Transportation Both Influences Heat & is Influenced by Heat

Transportation & Land

Use System

Travel Behavior/Mode Choice

Urban Heat Island

Green House Gas

CO,

Personal Heat Exposure

Health

Tucson Cool Pavement Project

Pilot of Cool Pavement

- 1.5 mile
- TiO2 embedded via asphalt rejuvenator
 Partnerships
 - City of Tucson
 - University of Arizona
 - NITC

What Scale & How Do we Measure?

What Scale do we Measure?

Urban Heat Island Regional

Microclimate Corridor Pedestrian Level

Tucson Cool Pavement Project- Sites

Before/After, Case/Control Nine Sites

- 6 test sites
- 3 control sites

Used GIS to map and match test sites to control sites

- 7 land cover types:
 - Water, Trees/Shrubs, Irrigated Land, Desert, Barren/Bedrock, Impervious, Structures
- Street design
- Street Orientation

Personal Heat Exposure Measurement Ambient Air

- A general level of heat
- Measured by standard thermometer
- Analogous to the weather station readings

Thermal Comfort

- Wet Bulb Globe Temperature (WBGT) Index
- Measured comfort of humans at pedestrian level
- WBGT expands the concept of ambient air temperature to incorporate humidity, wind, and solar radiant heat.

Surface Temperatures

- Sidewalks, gravel, vegetation, etc.
- Sun and Shade

Measuring Impact of UV

Titanium Dioxide

- Reflectivity
 - Sunscreen, current
 pavement striping, paint,
 protective clothing, and
 more!
- Safe, fairly cheap

Measurement

- Hourly, measure sky/ground
- Each sidewalk and centerline
- 3 times each, then average

SUNSCREEN INGREDIENTS & BROAD SPECTRUM PROTECTION

ACTIVE INGREDIENT:

Octinoxate Octisalate Octocrylene Oxybenzone Titanium Dioxide Zinc Oxide Avobenzone

WAVELENGTH (nM):

Tucson Cool Pavement Project-Times

Before: October 2021 After: April 2022

- 3 days for each segment
- 2 treatments + 1 control
- •10AM-4PM

Tucson Cool Pavement Project- Baseline WBGT

Summary of Findings

Focusing on Before/After, **Treatment Only**

Controlling for temporal autocorrelation

Centerline Analysis

	Ambient (^o F)	WBGT (°F)
Autocorrelation one-min. lags	1	3
Shade	-0.3	-0.08
Wind	-1.0	-0.04
After (vs. Before)	-0.3	Not sig.

Notes: ***: p-value < 0.001; **: p-value < 0.01; *: p-value Figure 11 Temperature differences (°F) for ambient air temperature and wet bulb globe temperature by segment and site (a) without and (b) with temporal lags

Summary of Findings

Experimental UVB/UV Index

UVIndex – reflection higher on concrete (sidewalk) than asphalt (road)

	Highest Range of Measurement	Proportion Reflected (average)
UV Index	7.7-8.1 "Very High"	4%
UVB	0.22-0.26 mW/cm^2	3%

Temperature (°F) Difference with Surface Temperature

Summary of Findings

Challenges and Caveats

Observations (vs. Predictive Modeling)

- Data rich, but point-specific
- Manual data collection is time consuming and instrument intensive

With Micro-Environments, Before-After worked better than Case-Control

Challenges

- Controlling for spatial- and temporal autocorrelation
- Statistically linking surface temperature (hourly) with Kestrel data (10-sec.)

What is Next for Cool Corridor Project?

What are the Conceptual Tradeoffs?

- Greening
- Cool Pavements

Incorporate Surface Temperature Comparisons

Compare Centerline with Sidewalk

Test Micro-Environment Features

Lessons Learned, DOE Testbed

Any Questions?

Kristina M. Currans, Associate Professor, Urban Planning curransk@arizona.edu

This project was funded by the National Institute for Transportation and Communities (NITC; grant number 1483), a USDOT University Transportation Center. <u>https://nitc.trec.pdx.edu/research/project/1483/Assessing Cool Corridor Heat Resilience Strategies for Human-Scale Transportation</u>

